ELECTROREFINING OF TITANIUM IN ALKALI METALS CHLORIDE-FLUORIDE MELTS WITH AND WITHOUT ADDITIVES OF MAGNESIUM FLUORIDE
- Authors: Vetrova D.A.1, Kuznetsov S.A.1
-
Affiliations:
- Institute of Chemistry, Kola science Centre of the RAS
- Issue: No 6 (2025)
- Pages: 569–581
- Section: Articles
- URL: https://journal-vniispk.ru/0235-0106/article/view/355828
- DOI: https://doi.org/10.7868/S3034571525060029
- ID: 355828
Cite item
Abstract
Titanium powders were obtained by the electrorefining in the NaCl-KCl-NaF(10 wt %)–K2TiF6(7 wt%)–Ti melt with and without magnesium fluoride (MgF2) addition. The influence of temperature and the cathodic current density on the current efficiency was determined. It was found that the current efficiency of the titanium electrorefining in the chloride-fluoride melt increased with the introduction of Mg2+ cations into the melt. The powders granulometric analysis of titanium powders obtained in melts of various compositions showed that the dispersion of powders decreased when highly polarizing cations were introduced into the melt. The electrolysis parameters and the temperature effect on the purity of obtained powders in chloride-fluoride melts of various compositions has been studied. It was determined that upon the titanium electrorefining in the chloride-fluoride NaCl-KCl-NaF-K2TiF6-Ti melt, the content of impurities in the metal decreased, and a lower impurities content was found in titanium powders obtained in the melt with the addition of magnesium fluoride. A comparative analysis of the electrorefining in the chloride-fluoride melt with the addition of magnesium fluoride (NaCl-KCl-NaF-K2TiF6-Ti-MgF2) has shown the advantages of this melt in comparison with a molten salt system that does not contain the magnesium salt. These advantages are due to the higher current efficiency, the less dispersion of powders, and the lower content of impurities in the metal. As a result of the work, the optimal electrolyte composition (NaCl-KCl-NaF(10 wt %)–K2TiF6(7 wt %)–Ti-MgF2(1.4 wt %)) and the parameters of the electrorefining process (i = 100 mA/cm2; T = 1023-1073 K) were determined. Under these conditions the titanium powder of 99.73% purity was obtained.
Keywords
About the authors
D. A. Vetrova
Institute of Chemistry, Kola science Centre of the RAS
Email: d.vetrova@ksc.ru
Apatity, Russia
S. A. Kuznetsov
Institute of Chemistry, Kola science Centre of the RASApatity, Russia
References
- Парфенов О.Г., Пашков Г.Л. Проблемы современной металлургии титана / Новосибирск: CО РАН. 2008.
- Kroll W. The Production of Ductile Titanium // Trans. Electrochem. Soc. 1940. 78(1). Р. 35–47.
- Лебедев В.А. Металлургия титана / В.А. Лебедев, Д.А. Рогожников. Екатеринбург: ООО «Издательство УМЦ УПИ», 2015.
- Колобов Г.А., Печерица К.А. Традиционные и новые технологии рафинирования титана // Титан. 2010. № 1. С. 68–72.
- Электролитическое рафинирование титана в расплавленных средах / под ред. В.Г. Гопиенко, Л.Н. Антипина, Ю.Г. Олесова / М.: Металлургия, 1972.
- Quemper F., Deroo D., Rjgaud M. Electrolytic reduction of titanium chlorides in fused alkali-chloride eutectics // J. Electrochem. Soc. 1972. 119. № 10. P. 1353.
- Ferry D.M., Picard G.S., Tremillon B.L. Pulse and AC impedance studies of the electrochemical systems of titanium in LiCl-KCl eutectic melt at 743 K // J. Electrochem. Soc. 1988. 135. № 6. P. 1443.
- Malyshev V., Gab A., Bruskova D.-M., Astrelin I, Popescu A.-M., Constantin V. Electroreduction processes involving titanium and boron species in halide melts // Revue Roumaine de Chimie. 2009. 54. № 1. P. 5–25.
- Haarberg G.M., Rolland W., Sterten A., Thonstad J. Electrodeposition of titanium from chloride melts // J. Appl. Electrochem. 1993. 23. P. 217–224.
- Chen G.S., Okido M., Oki T. Electrochemical studies of titanium in fluoride-chloride molten salts // J Appl. Electrochem. 1988. 18(1). P. 80–85.
- Polyakova L.P., Stangrit P.T., Polyakov E.G. Electrochemical study of titanium in chloride-fluoride melts // Electrochim. Acta. 1986. 31(2). P. 159–161.
- Елизарова И.Р., Полякова Л.П., Поляков Е.Г., Стангрит П.Т. Электрохимическое поведение ионов титана в расплаве CsCl-KCl-NaCl-NaF-K2TiF6 // Электрохимия. 1996. 32. № 3. С. 407–414.
- Sequeira C.A.C. Chronopotentiometric study of titanium in molten NaCl+KCl+K2TiF6 // J. Electroanal. Chem. and Interfacial Electrochem. 1988. 239(1–2). P. 203–208.
- Norikawa Y., Yasuda K., Nohira T. Electrochemical behavior of Ti(III) ions in a KF-KCl eutectic melt // Electrochemistry. 2018. 86. P. 99–103.
- Norikawa Y.A., Nohira T. New concept of molten salt systems for the electrodeposition of Si, Ti, and W // Accounts of Chem. Res. 2023. 56. №13. P. 1698–1709.
- Ветрова Д.А., Кузнецов С.А. Влияние катионов щелочноземельных металлов на кинетику переноса заряда редокс-пары Ti(IV)/Ti(III) в хлоридно-фторидном расплаве // Расплавы. 2016. № 6. С. 524–534.
- Vetrova D.A., Kuznetsov S.A. Influence of the alkaline earth metal cations on the standard rate constants of charge transfer for the redox couple Ti(IV)/Ti(III) in chloride-fluoride melts // ECS Transactions. 2016. 75–15. P. 363–371.
- Ветрова Д.А., Кузнецов С.А. Электрохимическое поведение редокс-пары Ti(IV)/Ti(III) в расплаве KCl-KF-K2TiF6 в присутствии катионов щелочноземельных металлов // Расплавы. 2020. № 2. С. 208–220.
- Ветрова Д.А., Кузнецов С.А. Кинетика переноса заряда редокс пары Ti(IV)/Ti(III) в хлоридно-фторидных расплавах // Расплавы. 2021. № 6. С. 1–9.
- Vetrova D.A., Kuznetsov S.A. Electrochemical behavior of titanium complexes in the KCl-KF melt with additions of alkaline earth metal cations // J. Electrochem. Soc. 2021. 168. № 3. P. 036517.
- Vetrova D.A., Popova A.V., Kuznetsov S.A. Electrochemical behavior of niobium and titanium complexes in chloride-fluoride melts with addition of alkaline earth metal cations // J. Electrochem. Soc. 2024. 171. № 4. P. 046506.
- Steinberg M.A., Carlton S.S., Sibert M.E., Wainer E.J. Preparation of titanium by fluoride electrolysis // J. Electrochem. Soc. 1955. 102. № 6. P. 332–341.
- Патент № 2731950 C2 Российская Федерация / Способ получения микроструктурных порошков титана: № 2019104952: заявл. 21.02.2019: опубл. 09.09.2020 / В.А. Лебедев, В.В. Поляков.
Supplementary files


