NUMERICAL MODELING OF CYCLIC VOLTAMMOGRAMS FOR ELECTROCHEMICAL GROWTH AND DISSOLUTION OF AN ARRAY OF NEW-PHASE NUCLEI

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of methods for studying the initial stages of electrocrystallization is important both for the development of fundamental ideas about the mechanisms and kinetics of phase formation and for determining the optimal electrodeposition conditions. However, most theoretical models designed to study the patterns of nucleation/ growth processes under variable supersaturation (overpotential) do not take into account the mutual influence of nuclei during multiple nucleation. To recreate conditions close to practice, models are required that more realistically reproduce the competition of nuclei for depositing ions. This paper presents a mathematical model and numerical simulation results for diffusion-controlled growth and dissolution of a hemispherical nucleus inside a large hexagonal ensemble under cyclic potential sweep conditions. Concentration profiles at different time points, cyclic voltammograms (CV) and overpotential dependences of the nucleus size are calculated. Non-stationary effects and changes in the current response when varying process parameters are theoretically substantiated. It is shown that a decrease in the scan rate, an increase in the reverse potential and the number density of nuclei on the electrode leads to a gradual transformation of the cathode part of CVs from the nucleation loop to the cathode peak. The indicated changes are caused by the increase in the mutual influence of neighboring nuclei and the approach to the conditions of semi-infinite linear diffusion to the entire electrode surface. At a constant reverse potential value, the maximum size of nuclei is greater, the lower their number density and the scan rate. The calculation results are in qualitative agreement with those typically recorded in experimental studies of the initial stages of metal electrocrystallization.

About the authors

O. V. Grishenkova

Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Email: olagris@mail.ru
Ekaterinburg, Russia

A. V. Kosov

Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia

O. L. Semerikova

Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia

References

  1. Барабошкин А.Н. Электрокристаллизация металлов из расплавленных солей. М.: Наука. 1976. 279 с.
  2. Гамбург Ю.Д. Электрохимическая кристаллизация металлов и сплавов. М.: Янус-К. 1997. 384 с.
  3. Milchev A. Electrocrystallization: fundamentals of nucleation and growth. Boston: Kluwer Academic Publishers. 2002. 265 p.
  4. Исаев В.А. Электрохимическое фазообразование. Екатеринбург: УрО РАН. 2007. 124 с.
  5. Isaev V.A., Grishenkova O.V., Zaykov Yu.P. Analysis of the geometrical–probabilistic models of electrocrystallization // Russian Metallurgy (Metally). 2016. 2016. № 8. P. 776–784.
  6. Isaev V.A., Grishenkova O.V., Zaykov Yu.P., Kosov A.V., Semerikova O.L. Analysis of Potentiostatic Current Transients for Multiple Nucleation with Diffusion and Kinetic Controlled Growth // J. Electrochem. Soc. 2019. 166. P. D851–D856.
  7. Scharifker B.R., Hills G.J. Theoretical and experimental studies of multiple nucleation // Electrochim. Acta. 1983. 28. P. 879–889.
  8. Scharifker B.R., Mostany J. Three-dimensional nucleation with diffusion controlled growth. Part I. Number density of active sites and nucleation rates per site // J. Electroanal. Chem. 1984. 177. P. 13–23.
  9. Sun Yu., Zangari G. Commentary and Notes on the Original Derivations of the Scharifker-Hills Model // J. Electrochem. Soc. 2023. 170. P. 032503.
  10. Kosov A.V., Grishenkova O.V., Isaev V.A., Zaikov Y. Simulation of Diffusion-Controlled Growth of Interdependent Nuclei under Potentiostatic Conditions // Materials 2022. 15. P. 3603.
  11. Isaev V.A., Grishenkova O.V., Semerikova O.L. Three-dimensional nucleation and growth under galvanostatic conditions // J. Solid State Electrochem. 2013. 17. P. 361–363.
  12. Isaev V.A., Grishenkova O.V. Galvanostatic nucleation and growth under diffusion control // J. Solid State Electrochem. 2013. 17. P. 1505–1508.
  13. Milchev A., Montenegro M.I. A galvanostatic study of electrochemical nucleation // J. Electroanal. Chem. 1992. 333. P. 93–102.
  14. Исаев В.А., Гришенкова О.В., Косов А.В., Семерикова О.Л., Зайков Ю.П. Моделирование потенциодинамического и гальваностатического фазообразования в расплавах // Расплавы. 2017. № 1. C. 43–53.
  15. Fletcher S., Halliday C.S., Gates D., Westcott M., Lwin T., Nelson G. The response of some nucleation/growth processes to triangular scans of potential // J. Electroanal. Chem. 1983. 159. P. 267–285.
  16. Mirkin M.V., Nilov A.P. Three-dimensional nucleation and growth under controlled potential // J. Electroanal. Chem. 1990. 283. P. 35–51.
  17. Grishenkova O.V., Kosov A.V., Semerikova O.L., Isaev V.A., Zaikov Yu.P. Theoretical and experimental cyclic voltammetry studies of the initial stages of electrocrystallization // Russian Metallurgy (Metally). 2021. 2021. № 8. P. 1016–1022.
  18. Isaev V.A., Grishenkova O.V., Kosov A.V., Semerikova O.L., Zaykov Yu.P. On the theory of cyclic voltammetry for formation and growth of single metal cluster // J. Solid State Electrochem. 2017. 21. P. 787–791.
  19. Kosov A.V., Grishenkova O.V., Isaev V.A., Zaikov Y. Simulation of Diffusion-Controlled Growth of Interdependent Nuclei under Potentiostatic Conditions // Materials 2022. 15. P. 3603.
  20. Grishenkova O.V., Kosov A.V. Simulation of cyclic voltammograms for 3D diffusion-controlled growth and dissolution of new phase nuclei // J. Electroanal. Chem. 2025. 982. P. 119020.
  21. Zaykov Yu.P., Zhuk S.I., Isakov A.V., Grishenkova O.V., Isaev V.A. Electrochemical nucleation and growth of silicon in the KF-KCl-K2SiF6 melt // J. Solid State Electrochem. 2015. 19. P. 1341–1345.
  22. Berzins T., Delahay P. Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes // J. Am. Chem. Soc. 1953. 75. 555–559.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).