Endogenous heparin-like syndrome in a patient after intrauterine spina bifida repair

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background: Endogenous heparin-like syndrome (HLS) in obstetrics is a rare complication most practicing physicians are unfamiliar with. Glycosaminoglycans (GAGs) circulating in the bloodstream, mostly of endothelial origin, play the role of endogenous heparins. Liver disease, systemic inflammatory response, and infectious diseases are associated with the HLS development. The incidence of HLS varies according to pathology; for instance, it is 5% in trauma, and in liver transplantation it can be as high as 100%. The incidence of HLS in obstetrics remains unclear. The difficulty in the correction of the hemorrhagic syndrome associated with HLS is the lack of a uniform approach to therapy.

Case report: This article presents the first clinical observation of the HLS development in a pregnant woman after intrauterine correction of fetal spina bifida by open fetal surgery. Severe HLS was detected by thromboelastometry (CTINTEM /CTHEPTEM ratio >2); Laboratory parameters (activated partial thromboplastin time, thrombin time) showed hypocoagulation due to the presence of GAGs in the blood.

Conclusion: Monitoring of the hemostasis system in the perioperative period in obstetric patients can help timely recognize HLS and reduce the incidence of bleeding caused by the presence of endogenous GAGs. Further study is required to better understand how to diagnose and treat HLS effectively.

About the authors

Olga S. Beznoshchenko

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: o_beznoshchenko@oparina4.ru
ORCID iD: 0000-0003-4645-8976

PhD, Researcher at the Institute of Anesthesiology, Reanimatology and Transfusiology, Clinical Laboratory Diagnostics Doctor at the Department of Anesthesiology and Intensive Care

Russian Federation, Moscow

Kirill A. Ostrik

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: k_ostrik@oparina4.ru
ORCID iD: 0009-0005-6064-665X

Anesthesiologist-Resuscitator at the Department of Anesthesiology and Intensive Care

Russian Federation, Moscow

Borislav V. Silaev

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: b_silaev@oparina4.ru
ORCID iD: 0000-0002-9698-3915

PhD, Head of the Department of Anesthesiology-Intensive Care, Director of the Institute of Anesthesiology-Intensive Care and Transfusiology

Russian Federation, Moscow

Roman G. Shmakov

Academician V.I. Krasnopolsky Moscow Regional Research Institute of Obstetrics and Gynecology

Email: mdshmakov@mail.ru
ORCID iD: 0000-0002-2206-1002

Dr. Med. Sci., Professor of the Russian Academy of Sciences, Director; Chief Freelance Specialist in Obstetrics of the Ministry of Health of Russia

Russian Federation, Moscow

Alexey V. Pyregov

Moscow Regional Perinatal Center

Email: pyregov@mail.ru
ORCID iD: 0000-0001-8382-9671

Dr. Med. Sci., Professor, Deputy Chief Physician for Anesthesiology and Resuscitation; Chief Freelance Specialist in Anesthesiology and Resuscitation in Obstetrics of the Ministry of Health of the Moscow Region

Russian Federation, Balashikha

References

  1. Морозов С.Л., Полякова О.В., Яновская Н.В., Зверева А.В., Длин В.В. Spina Bifida. Современные подходы и возможности к диагностике, лечению и реабилитации. Практическая медицина. 2020; 18(3): 32-7. [Morozov S.L., Polyakova O.V., Yanovskaya N.V., Zvereva A.V., Dlin V.V. Spina Bifida. Modern approaches and opportunities for diagnosis, treatment and rehabilitation. Practical Medicine. 2020; 18(3): 32-7. (in Russian)]. https:// dx.doi.org/10.32000/2072-1757-2020-3-32-37.
  2. Copp A.J., Adzick N.S., Chitty L.S. Fletcher J.M., Holmbeck G.N., Shaw G.M. Spina Bifida. Nat. Rev. Dis. Primers. 2015; 1: 15007. https://dx.doi.org/10.1038/NRDP.2015.7.
  3. Sacco A., Ushakov F., Thompson D., Peebles D., Pandya P., De Coppi P. et al. Fetal surgery for open spina bifida. Obstet. Gynaecol. 2019; 21(4): 271-82. https:// dx.doi.org/10.1111/tog.12603.
  4. Adzick N.S., Thom E.A., Spong C.Y., Brock J.W., Burrows P.K., Johnson M.P. et al.; MOMS Investigators. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N. Engl. J. Med. 2011; 364(11): 993-1004. https:// dx.doi.org/10.1056/NEJMoa1014379.
  5. Буланов А.Ю., Яцков К.В., Шулутко Е.М., Глухова Т.Е., Адрейченко С.А. Эндогенный гепариноподобный синдром: анализ клинических наблюдений. Анестезиология и реаниматология. 2012; 3: 51-4. [Bulanov A.Yu., Yatskov K.V., Shulutko E.M., Glukhova T.E., Andreychenko S.A. Endogenous heparin-like syndrome: clinical observations analysis. Russian Journal of Anesthesiology and Reanimatology. 2012; (3): 51-4. (in Russian)].
  6. Schött U. Solomon C., Fries D., Bentzer P. The endothelial glycocalyx and its disruption, protection and regeneration: A narrative review. Scand. J. Trauma. Resusc. Emerg. Med. 2016; 24(1): 1-8. https://dx.doi.org/10.1186/ S13049-016-0239-y/tables/2.
  7. Villalba N., Baby S., Yuan S. The endothelial glycocalyx as a double-edged sword in microvascular homeostasis and pathogenesis. Front. Cell Dev. Biol. 2021; 9: 1-14. https://dx.doi.org/10.3389/fcell.2021.711003.
  8. Giri T.K., Tollefsen D.M. Placental dermatan sulfate: isolation, anticoagulant activity, and association with heparin cofactor II. Blood. 2006; 107(7): 2753-8. https://dx.doi.org/10.1182/blood-2005-09-3755.
  9. Yu Y., Bruzdoski V., Kostousov K., Hensch V., Hui L., Siddiqui Sh. et al. Structural characterization of a clinically described heparin-like substance in plasma causing bleeding. Carbohydr. Polym. 2020; 244: 116443. https:// dx.doi.org/10.1016/j.carbpol.2020.116443.
  10. Patterson E.K., Cepinskas G., Fraser D.D. Endothelial glycocalyx degradation in critical illness and injury. Front. Med. 2022; 9: 898592. https:// dx.doi.org/10.3389/fmed.2022.898592.
  11. Senzolo M., Cholongitas E., Thalheimer U., Riddell A., Agarwal S., Mallett S. et al. Heparin-like effect in liver disease and liver transplantation. Clin. Liver Dis. 2009; 13(1): 43-53. https://dx.doi.org/10.1016/j.cld.2008.09.004.
  12. Wang S., Chao Q., Zhicheng L., Ting X., Chunyan Y. Endogenous Heparin-like substances may cause coagulopathy in a patient with severe postpartum hemorrhage. Transfus. Med. Hemotherapy. 2020; 47(40): 337-43. https://dx.doi.org/10.1159/000504610.
  13. Yan T., Fei H., Changfu J., Dong L., Weng C.-F. Manifestation of high endogenous heparinization in postpartum hemorrhage patient using thromboelastography: new avenue of coagulopathy monitoring. Arch. Clin. Med. 2023; 07(01): 82-8. https://dx.doi.org/10.26502/acmcr.96550578.
  14. Ferschl M., Ball R., Lee H., Rollins M. Anesthesia for in utero repair of myelomeningocele. Anesthesiology. 2013; 118(5): 1211-23. https:// dx.doi.org/10.1097/aln.0b013e31828ea597.
  15. Senzolo M., Coppell J., Cholongitas E., Riddell A., Triantos C. K., Perry D. et al. The effects of glycosaminoglycans on coagulation: a thromboelastographic study. Blood Coagul. Fibrinolysis. 2007; 8(3): 227-36. https://dx.doi.org/10.1097/mbc.0b013e328010bd3d.
  16. Yassen K.A., Refaat E.K., Helal S.M., Metwally A.A., Youssef S.D., Görlinger K. Detection and quantification of perioperative heparin-like effects by rotational thromboelastometry in living-donor liver transplant recipients: a prospective observational study. J. Anaesthesiol. 2023; 39(2): 285-91. https:// dx.doi.org/10.4103/joacp.joacp_521_21.
  17. Руководство по эксплуатации тромбоэластометра ROTEM Delta. Tem Innovations GmbH. Germany. 2016: 1-265. [ROTEM Delta Thromboelastometer Operating Manual. Tem Innovations GmbH. Germany. 2016: 1-265. (in Russian)].
  18. Görlinger K., Dirkmann D., Hanke A. Rotational thromboelastometry (ROTEM®). In: Trauma Induced Coagulopathy. 2016: 267-98. https:// dx.doi.org/10.1007/978-3-319-28308-1_18.
  19. Yoon U. Native whole blood (TRUE-NATEM) and recalcified citrated blood (NATEM) reference value validation with ROTEM delta. Semin. Cardiothorac. Vasc. Anesth. 2023; 27(3): 199-207. https://doi.org/10.1177/10892532231151528.
  20. Senzolo M.,Agarwal S., Zappoli P.,Vibhakorn S.,Mallett S., Burroughs A. Heparin-like effect contributes to the coagulopathy in patients with acute liver failure undergoing liver transplantation. Liver Int. 2009; 29(5): 754-9. https:// doi.org/10.1111/j.1478-3231.2009.01977.x.
  21. Durila M., Pavlicek P., Hadacova I., Nahlovsky J., Janeckova D. Endogenous heparinoids may cause bleeding in mucor infection and can be detected by nonactivated thromboelastometry and treated by recombinant activated factor VII: a case report. Medicine (Baltimore). 2016; 95(8): e2933. https:// doi.org/10.1097/md.0000000000002933.
  22. Галстян Г.М., Полеводова О.А., Берковский А.Л., Сергеева Е.В. Тромбоэластография : сравнение полибрена и гепариназы для инактивации гепарина. Анестезиология и реаниматология. 2018; (5): 60-9. [Galstyan G.M., Polevodova O.A., Berkovskiy A.L., Sergeeva E.V. Thromboelastography: a comparison of polybrene and heparinase for the inactivation of heparin. Russian Journal of Anesthesiology and Reanimatology. 2018; (5): 60-9. (in Russian)]. https://doi.org/10.17116/anaesthesiology201805160.
  23. Nacoti M., Cantù D., Bonacina D., Lussana F., Bonanomi E., Marchetti M. et al. Heparin-like effect resistant to protamine in a child with haemorrhagic shock. Do we need heparinase? Blood Transfus. 2018; 16(4): 394-6. https:// doi.org/10.2450/2017.0088-17.
  24. Руководство по эксплуатации. Анализатор гемостаза Teg® 5000. 2008. Haemonetics Corporation. [Operation manual. Teg® 5000 hemostasis analyzer. 2008. Haemonetics Corporation. (in Russian)].
  25. Kumano O., Ieko M., Naito S., Yoshida M., Takahashi N. APTT reagent with ellagic acid as activator shows adequate lupus anticoagulant sensitivity in comparison to silica‐based reagent. J. Thromb. Haemost. 2012; 10(11): 2338-43. https://doi.org/10.1111/j.1538-7836.2012.04906.x.
  26. HemosIL® Reagents | Werfen North America. Available at: https://www.werfen.com/na/en/hemostasis/hemosil-reagents
  27. Ichikawa J., Kodaka M.,Nishiyama K., Hirasaki Y.,Ozaki M., Komori M. Reappearance of circulating heparin in whole blood heparin concentration-based management does not correlate with postoperative bleeding after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2014; 28(4): 1003-7. https:// doi.org/10.1053/j.jvca.2013.10.010.
  28. Song Y., Zhang F., Linhardt R.J. Glycosaminoglycans. Adv. Exp. Med. Biol. 2021; 1325: 103-16. https://doi.org/10.1007/978-3-030-70115-4_4/figures/2.
  29. Kantarcioglu B., Mehrotra S., Papineni C., Siddiqui F.,Kouta A., Hoppensteadt D. et al. Endogenous glycosaminoglycans in various pathologic plasma samples asmeasured by a fluorescent quenching method. Clin. Appl. Thromb. 2022; 28: 10760296221144047. https://doi.org/10.1177/10760296221144047.
  30. Achur R.N., Valiyaveettil M., Alkhalil A., Ockenhouse C.F., Gowda D.C. Characterization of proteoglycans of human placenta and identification of unique chondroitin sulfate proteoglycans of the intervillous spaces that mediate the adherence of Plasmodium falciparum-infected erythrocytes to the placenta. J. Biol. Chem. 2000; 275(51): 40344-56. https://doi.org/10.1074/ JBC.M006398200.
  31. Said J.M. The role of proteoglycans in contributing to placental thrombosis and fetal growth restriction. J. Pregnancy. 2011; 2011: 928381. https:// doi.org/10.1155/2011/928381.
  32. Zhang Q.,Yan C., Xu L., Xie W., Li J., Zhang W. et al. The treatment effect of protamine on severe coagulopathy in Epstein–Barr virus-associated hemophagocytic lymphohistiocytosis: case reports and literature review. Indian J. Hematol. 2021; 37(1): 90. https://doi.org/10.1007/S12288-020-01308-6.
  33. Shen H., Wu C., Chen L., Zhang R. Acquired heparin-like anticoagulation process in a patient with multiple myeloma: a case report and literature review. Transl. Cancer Res. 2020; 9(11): 7366-71. https://doi.org/10.21037/ tcr-20-1968.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Laboratory signs of HPS in a pregnant woman after intrauterine fetal spina bifida surgery: absence of coagulation in INTEM (STINTEM undetectable) with normalisation of coagulation (STNERTEM 187 s) after addition of heparinase in NERTEM

Download (1MB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».