Etiopathogenetic mechanisms of uterine fibroids development

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Uterine fibroids are the most common benign tumors in women. However, despite the high incidence of uterine fibroids among reproductive-aged women, its negative impact on a woman’s quality of life, and health care costs for the treatment of patients with uterine tumors, there is currently no unified understanding of the etiopathogenesis of this disease. The modern data on the causes and mechanisms of uterine fibroids development are considered in the article. Uterine fibroids have a complex, multifactorial nature. Genetic, epigenetic factors, dysregulation of key signaling pathways involved in cell proliferation, apoptosis, extracellular matrix proliferation, as well as reactions to steroid hormones play an important role in the development and growth of myoma nodes.

Conclusion: Modern views on the etiopathogenesis of uterine fibroids indicate that this disease has a complex, multifactorial nature. The development of this disease involves genetic and epigenetic mechanisms, reactions to steroid hormones, dysregulation of key signaling pathways, etc. However, in spite of significant progress in understanding of uterine fibroids pathophysiology, today there are still more questions than answers.

 

作者简介

Marina Ponomarenko

Belgorod State National Research University

Email: ponomarenkomc@yandex.ru
ORCID iD: 0009-0009-0312-0829

graduate student of the Department of Biomedical Disciplines

俄罗斯联邦, 308015, Belgorod, Pobedy str., 85

Evgeny Reshetnikov

Belgorod State National Research University

Email: reshetnikov@bsu.edu.ru
ORCID iD: 0000-0002-5429-6666

Dr. Bio. Sci., Professor of the Department of Medical and Biological Disciplines

 

俄罗斯联邦, 308015, Belgorod, Pobedy str., 85

Irina Ponomarenko

Belgorod State National Research University

编辑信件的主要联系方式.
Email: ponomarenko_i@bsu.edu.ru
ORCID iD: 0000-0002-5652-0166

Dr. Med. Sci., Professor of the Department of Medical and Biological Disciplines

俄罗斯联邦, 308015, Belgorod, Pobedy str., 85

Mikhail Churnosov

Belgorod State National Research University

Email: churnosov@bsu.edu.ru
ORCID iD: 0000-0003-1254-6134

Dr. Med. Sci., Head of the Department of Medical and Biological Disciplines

俄罗斯联邦, 308015, Belgorod, Pobedy str., 85

参考

  1. Yang Q., Ciebiera M., Bariani M.V., Ali M., Elkafas H., Boyer T.G., Al-Hendy A. Comprehensive review of uterine fibroids: developmental origin, pathogenesis, and treatment. Endocr. Rev. 2022;43(4):678-719. https://dx.doi.org/10.1210/endrev/bnab039.
  2. Ali M., Ciebiera M., Vafaei S., Alkhrait S., Chen H.-Yu., Chiang Yi-F. et al. Progesterone signaling and uterine fibroid pathogenesis; molecular mechanisms and potential therapeutics. Cells. 2023;12(8):1117. https://dx.doi.org/10.3390/cells12081117.
  3. Koltsova A.S., Efimova O.A., Pendina A.A. A view on uterine leiomyoma genesis through the prism of genetic, epigenetic and cellular heterogeneity. Int. J. Mol. Sci. 2023;24(6):5752. https://dx.doi.org/10.3390/ijms24065752.
  4. Stewart E.A., Nowak R.A. Uterine fibroids: hiding in plain sight. Physiology (Bethesda). 2022;37(1):16-27. https://dx.doi.org/10.1152/physiol.00013.2021.
  5. Lou Z., Huang Y., Li S., Luo Z., Li C., Chu K. et al. Global, regional, and national time trends in incidence, prevalence, years lived with disability for uterine fibroids, 1990-2019: an age-period-cohort analysis for the global burden of disease 2019 study. BMC Public Health. 2023;23(1):916. 10.1186/s12889-023-15765-x' target='_blank'>https://dx.doi: 10.1186/s12889-023-15765-x.
  6. Shih V., Banks E., Bonine N.G., Harrington A., Stafkey-Mailey D., Yue B. et al. Healthcare resource utilization and costs among women diagnosed with uterine fibroids compared to women without uterine fibroids. Curr. Med. Res. Opin. 2019;35(11):1925-35. https://dx.doi.org/10.1080/ 03007995.2019.1642186.
  7. Baranov V.S., Osinovskaya N.S., Yarmolinskaya M.I. Pathogenomics of uterine fibroids development. Int. J. Mol. Sci. 2019;20(24):6151. https://dx.doi.org/10.3390/ijms20246151.
  8. Machado-Lopez A., Simón C., Mas A. Molecular and cellular insights into the development of uterine fibroids. Int. J. Mol. Sci. 2021;22(16):8483. https://dx.doi.org/10.3390/ijms22168483.
  9. Пономаренко И.В., Чурносов М.И. Современные представления об этиопатогенезе и факторах риска лейомиомы матки. Акушерство и гинекология. 2018;8:27-32. [Ponomarenko I.V., Churnosov M.I. Current views on the etiopathogenesis and risk factors of uterine leiomyoma. Obstetrics and Gynecology. 2018;(8):27-32. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.8.27-32.
  10. Salas A., Beltrán-Flores S., Évora C., Reyes R., Montes de Oca F., Delgado A., Almeida T.A. Stem cell growth and differentiation in organ culture: new insights for uterine fibroid treatment. Biomedicines. 2022;10(7):1542. https://dx.doi.org/10.3390/biomedicines10071542.
  11. Sefah N., Ndebele S., Prince L., Korasare E., Agbleke M., Nkansah A. et al. Uterine fibroids - causes, impact, treatment, and lens to the African perspective. Front. Pharmacol. 2023;13:1045783. https://dx.doi.org/10.3389/fphar.2022.1045783.
  12. Buyukcelebi K., Chen X., Abdula F., Duval A., Ozturk H., Seker-Polat F. et al. Engineered MED12 mutations drive uterine fibroid-like transcriptional and metabolic programs by altering the 3D genome compartmentalization. Res. Sq. [Preprint]. 2023;rs.3.rs-2537075. https://dx.doi.org/10.21203/rs.3.rs-2537075/v1.
  13. He Ch., Nelson W., Li H., Xu Y.-D., Dai X.-J., Wang Y.-X. et al. Frequency of MED12 mutation in relation to tumor and patient's clinical characteristics: a meta-analysis. Reprod. Sci. 2022;9(2):357-65. https://dx.doi.org/10.1007/s43032-021-00473-x.
  14. Äyräväinen A., Pasanen A., Ahvenainen T., Heikkinen T., Pakarinen P., Härkki P., Vahteristo P. Systematic molecular and clinical analysis of uterine leiomyomas from fertile-aged women undergoing myomectomy. Hum. Reprod. 2020;35(10):2237-44. https://dx.doi.org/10.1093/humrep/deaa187.
  15. Maekawa R., Sato S., Tamehisa T., Sakai T., Kajimura T., Sueoka K., Sugino N. Different DNA methylome, transcriptome and histological features in uterine fibroids with and without MED12 mutations. Sci. Rep. 2022;12(1):8912. https://dx.doi.org/10.1038/s41598-022-12899-7.
  16. Kirschen G.W., AlAshqar A., Miyashita-Ishiwata M., Reschke L., El Sabeh M., Borahay M.A. Vascular biology of uterine fibroids: connecting fibroids and vascular disorders. Reproduction. 2021;162(2):R1-R18. https://dx.doi.org/10.1530/REP-21-0087.
  17. Chang H.Y., Koh V.C.Y., Md Nasir N.D., Ng C.C.Y., Guan P., Thike A.A. et al. MED12, TERT and RARA in fibroepithelial tumours of the breast. J. Clin. Pathol. 2020;73(1):51-6. https://dx.doi.org/10.1136/jclinpath-2019-206208.
  18. Heikkinen T., Äyräväinen A., Hänninen J., Ahvenainen T., Bützow R., Pasanen A., Vahteristo P. MED12 mutations and fumarate hydratase inactivation in uterine adenomyomas. Hum. Reprod. Open. 2018;4:hoy020. https://dx.doi.org/10.1093/hropen/hoy020
  19. Ferrero H. HMGA2 involvement in uterine leiomyomas development through angiogenesis activation. Fertil. Steril. 2020;114(5):974-5. https://dx.doi.org/10.1016/j.fertnstert.2020.07.044
  20. Li Y., Qiang W., Griffin B.B., Gao T., Chakravarti D., Bulun S. et al. HMGA2-mediated tumorigenesis through angiogenesis in leiomyoma. Fertil. Steril. 2020;114(5):1085-96. https://dx.doi.org/10.1016/j.fertnstert.2020.05.036
  21. Unachukwu U., Chada K., D’Armiento J. High Mobility Group AT-Hook 2 (HMGA2) oncogenicity in mesenchymal and epithelial neoplasia. Int. J. Mol. Sci. 2020;21:3151. https://dx.doi.org/10.3390/ ijms21093151.
  22. Galindo L.J., Hernández-Beeftink T., Salas A., Jung Y., Reyes R., de Oca F.M. et al. HMGA2 and MED12 alterations frequently co-occur in uterine leiomyomas. Gynecol. Oncol. 2018;150(3):562-8. https://dx.doi.org/10.1016/ j.ygyno.2018.07.007.
  23. Zyla R.E., Hodgson A.J. Gene of the month: FH. J. Clin. Pathol. 2021;74(10):615-9. https://dx.doi.org/10.1136/jclinpath-2021-207830.
  24. Schmidt C., Sciacovelli M., Frezza C. Fumarate hydratase in cancer: A multifaceted tumour suppressor. Semin. Cell Dev. Biol. 2020;98:15-25. https://dx.doi.org/10.1016/j.semcdb.2019.05.002.
  25. Gregová M., Hojný J., Němejcová K., Bártů M., Mára M., Boudová B. et al. Leiomyoma with bizarre nuclei: a study of 108 cases focusing on clinicopathological features, morphology, and fumarate hydratase alterations. Pathol. Oncol. Res. 2020;26(3):1527-37. https://dx.doi.org/10.1007/ s12253-019-00739-5.
  26. Sciacovelli M., Gonçalves E., Johnson T.I., Zecchini V.R., da Costa A.S., Gaude E. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature. 2016;537(7621):544-7. https://dx.doi.org/10.1038/nature19353.
  27. Punjabi L.S., Thomas A. The Waldo of fibroids under the microscope: fumarate hydratase-deficient leiomyomata. F. S. Rep. 2022;3(2):172-3. https://dx.doi.org/10.1016/j.xfre.2022.03.008.
  28. Garg K., Rabban J. Hereditary leiomyomatosis and renal cell carcinoma syndrome associated uterine smooth muscle tumors: bridging morphology and clinical screening. Genes. Chromosomes Cancer. 2021;60:210-6. https://dx.doi.org/10.1002/gcc.22905.
  29. Zhao Z., Wang W., You Y., Zhu L., Feng F. Novel FH mutation associated with multiple uterine leiomyomas in Chinese siblings. Mol. Genet. Genomic Med. 2020;8(1):e1068. https://dx.doi.org/10.1002/mgg3.1068.
  30. Пономаренко И.В., Полоников А.В., Чурносов М.И. Полиморфные локусы гена LHCGR, ассоциированные с развитием миомы матки. Акушерство и гинекология. 2018;10:86-91. [Ponomarenko I.V., Polonikov A.V., Churnosov M.I. Polymorphic LHCGR gene loci associated with the development of uterine fibroids. Obstetrics and Gynecology. 2018;(10):86-91. (in Russian)]. https://dx.doi.org/10.18565/ aig.2018.10.86-91.
  31. Ponomarenko I., Reshetnikov E., Polonikov A., Verzilina I., Sorokina I., Yermachenko A. et al. Candidate genes for age at menarche are associated with uterine leiomyoma Front. Genet. 2021;11:512940. https://dx.doi.org/10.3389/fgene.2020.512940.
  32. Liu S., Yin P., Xu J., Dotts A.J., Kujawa S.A., Coon V.J.S. et al. Targeting DNA methylation depletes uterine leiomyoma stem cell-enriched population by stimulating their differentiation. Endocrinology. 2020;161(10):bqaa143. https://dx.doi.org/10.1210/endocr/bqaa143
  33. Ali M., Esfandyari S., Al-Hendy A. Evolving role of microRNAs in uterine fibroid pathogenesis: filling the gap! Fertil. Steril. 2020;113(6):1167-8. https://dx.doi.org/10.1016/j.fertnstert.2020.04.011
  34. Ciebiera M., Włodarczyk M., Zgliczyński S., Łoziński T., Walczak K., Czekierdowski A. The role of miRNA and related pathways in pathophysiology of uterine fibroids-from bench to bedside. Int. J. Mol. Sci. 2020;21(8):3016. https://dx.doi.org/10.3390/ijms21083016.
  35. Peng X., Mo Y., Liu J., Liu H., Wang S. Identification and validation of miRNA-TF-mRNA regulatory networks in uterine fibroids. Front. Bioeng. Biotechnol. 2022;10:856745. https://dx.doi.org/10.3389/fbioe.2022.856745.
  36. Kim M., Kang D., Kwon M.Y., Lee H.J., Kim M.J. MicroRNAs as potential indicators of the development and progression of uterine leiomyoma. PloS One. (2022);17(5):e0268793. https://dx.doi.org/10.1371/journal.pone.0268793.
  37. Falahati Z., Mohseni-Dargah M., Mirfakhraie R. Emerging roles of long non-coding RNAs in uterine leiomyoma pathogenesis: a review. Reprod. Sci. 2022;29:1086-101. https://dx.doi.org/10.1007/s43032-021-00571-w.
  38. Cao T., Jiang Y., Wang Z., Zhang N., Al-Hendy A., Mamillapalli R. et al. H19 LncRNA identified as a master regulator of genes that drive uterine leiomyomas. Oncogene. 2019;38:5356-66. https://dx.doi.org/10.1038/s41388-019-0808-4.
  39. Chuang T.D., Quintanilla D., Boos D., Khorram O. Long noncoding RNA MIAT modulates the extracellular matrix deposition in leiomyomas by sponging MiR-29 family. Endocrinology. 2021;162(11):bqab186. https://dx.doi.org/10.1210/endocr/bqab186.
  40. Zhou W., Wang G., Li B., Qu J., Zhang Y. LncRNA APTR promotes uterine leiomyoma cell proliferation by targeting ERα to activate the Wnt/β-Catenin pathway. Front. Oncol. 2021;11:536346. https://dx.doi.org/10.3389/fonc.2021.536346.
  41. Ulin M., Ali M., Chaudhry Z. T., Al-Hendy A., Yang Q. Uterine fibroids in menopause and perimenopause. Menopause. 2020;27(2):238-42. https://dx.doi.org/10.1097/GME.0000000000001438.
  42. Omar M., Laknaur A., Al-Hendy A., Yang Q. Myometrial progesterone hyper-responsiveness associated with increased risk of human uterine fibroids. BMC Womens Health. 2019;19(1):92. https://dx.doi.org/10.1186/s12905-019-0795-1
  43. Borahay M.A., Asoglu M.R., Mas A., Adam S., Kilic G.S., Al-Hendy A. Estrogen receptors and signaling in fibroids: role in pathobiology and therapeutic implications. Reprod. Sci. 2017;24:1235-44. https://dx.doi.org/10.1177/1933719116678686.
  44. Khan K.N., Fujishita A., Koshiba A., Ogawa K., Mori T., Ogi H. et al. Expression profiles of E/P receptors and fibrosis in GnRHa-treated and -untreated women with different uterine leiomyomas. PloS One. 2020;15(11):e0242246. https://dx.doi.org/10.1371/journal.pone.0242246.
  45. Головченко И.О. Генетические детерминанты уровня половых гормонов у больных эндометриозом. Научные результаты биомедицинских исследований. 2023;9(1):5-21. [Golovchenko I.O. Genetic determinants of sex hormone levels in endometriosis patients. Research Results in Biomedicine. 2023;9(1):5-21. (in Russian)]. https://dx.doi.org/10.18413/ 2658-6533-2023-9-1-0-1.
  46. Alsudairi H.N., Alrasheed A.T., Dvornyk V. Estrogens and uterine fibroids: an integrated view. Research Results in Biomedicine. 2021;7(2):156-63. https://dx.doi.org/10.18413/2658-6533-2021-7-2-0-6.
  47. Xing C., Zhang J., Zhao H., He B. Effect of sex hormone-binding globulin on polycystic ovary syndrome: mechanisms, manifestations, genetics, and treatment. Int. J. Womens Health. 2022;14:91-105. https://dx.doi.org/10.2147/IJWH.S344542.
  48. Balogh A., Karpati E., Schneider A.E., Hetey S., Szilagyi A., Juhasz K. et al. Sex hormone-binding globulin provides a novel entry pathway for estradiol and influences subsequent signaling in lymphocytes via membrane receptor. Sci. Rep. 2019;9(1):4. https://dx.doi.org/10.1038/s41598-018-36882-3.
  49. Hammond G.L. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action. J. Endocrinol. 2016;230(1):R13-25. https://dx.doi.org/10.1530/JOE-16-0070.
  50. Soave I., Marci R. From obesity to uterine fibroids: an intricate network. Curr. Med. Res. Opin. 2018;34(11):1877-9. https://dx.doi.org/ 10.1080/03007995.2018.1505606
  51. Mozzachio K., Moore A.B., Kissling G.E., Dixon D. Immunoexpression of steroid hormone receptors and proliferation markers in uterine leiomyoma and normal myometrial tissues from the miniature pig, sus scrofa. Toxicol. Pathol. 2016;44:450-7. https://dx.doi.org/10.1177/ 0192623315621414
  52. Ali M., Al-Hendy A. Selective progesterone receptor modulators for fertility preservation in women with symptomatic uterine fibroids. Biol. Reprod. 2017;97(3):337-52. https://dx.doi.org/10.1093/biolre/iox094.
  53. Stewart E.A. Gonadotropins and the uterus: is there a gonad-independent pathway? J. Soc. Gynecol. Investig. 2001;8(6):319-26.
  54. Baird D.D., Kesner J.S., Dunson D.B. Luteinizing hormone in premenopausal women may stimulate uterine leiomyomata development. J. Soc. Gynecol. Investig. 2006;13(2):130-5. https://dx.doi.org/10.1016/j.jsgi.2005.12.001.
  55. DiMauro A., Seger C., Minor B., Amitrano A.M., Okeke I., Taya M. et al. Prolactin is expressed in uterine leiomyomas and promotes signaling and fibrosis in myometrial cells. Reprod. Sci. 2022;29(9):2525-35. https://dx.doi.org/10.1007/s43032-021-00741-w.
  56. Cetin E., Al-Hendy A., Ciebiera M. Non-hormonal mediators of uterine fibroid growth. Curr. Opin. Obstet. Gynecol. 2020;32(5):361-70. https://dx.doi.org/ 10.1097/GCO.0000000000000650.
  57. Радзинский В.Е., Алтухова О.Б. Молекулярно-генетические детерминанты бесплодия при генитальном эндометриозе. Научные результаты биомедицинских исследований. 2018;4(3):28-37. [Radzinsky V.E., Altuchova O.B. Molecular-genetic determinants of infertility in genital endometryosis. Research Results in Biomedicine. 2018;4(3):28-37. (in Russian)]. https://dx.doi.org/10.18413/2313-8955-2018-4-3-0-3.
  58. Ciebiera M., Włodarczyk M., Wrzosek M., Słabuszewska-Jóźwiak A., Nowicka G., Jakiel G. Ulipristal acetate decreases transforming growth factor β3 serum and tumor tissue concentrations in patients with uterine fibroids. Fertil. Steril. 2018;109(3):501-7.e2. https://dx.doi.org/10.1016/j.fertnstert.2017.11.023.
  59. Yang Q., Al-Hendy A. Update on the role and regulatory mechanism of extracellular matrix in the pathogenesis of uterine fibroids. Int. J. Mol. Sci. 2023;24(6):5778. https://dx.doi.org/10.3390/ijms24065778.
  60. Ciebiera M., Włodarczyk M., Wrzosek M., Męczekalski B., Nowicka G., Łukaszuk K. et al. Role of transforming growth factor β in uterine fibroid biology. Int. J. Mol. Sci. 2017;18(11):2435. https://dx.doi.org/10.3390/ijms18112435.
  61. Ciebiera M., Włodarczyk M., Wrzosek M., Wojtyła C., Błażej M., Nowicka G. et al. TNF-α serum levels are elevated in women with clinically symptomatic uterine fibroids. Int. J. Immunopathol. Pharmacol. 2018;32:2058738418779461. https://dx.doi.org/10.1177/2058738418779461.
  62. Демакова Н.А. Молекулярно-генетические характеристики пациенток с гиперплазией и полипами эндометрия. Научные результаты биомедицинских исследований. 2018;4(2):26-39. [Demakova N.A. Molecular and genetic characteristics of patients with hyperplasia and endometric polyps. Research Results in Biomedicine. 2018;4(2):26-39. (in Russian)]. https://dx.doi.org/10.18413/2313-8955-2018-4-2-0-4.
  63. Navarro A., Bariani M.V., Yang Q., Al-Hendy A. Understanding the impact of uterine fibroids on human endometrium function. Front. Cell Dev. Biol. 2021;25(9):633180. https://dx.doi.org/10.3389/fcell.2021.633180.
  64. Ciebiera M., Włodarczyk M., Zgliczyńska M., Łukaszuk K., Męczekalski B., Kobierzycki C. et al. The role of tumor necrosis factor α in the biology of uterine fibroids and the related symptoms. Int. J. Mol. Sci. 2018;19(12):3869. https://dx.doi.org/10.3390/ijms19123869.
  65. K V.K., Bhat R.G., Rao B.K., R A.P. The gut microbiota: a novel player in the pathogenesis of uterine fibroids. Reprod. Sci. 2023;30(12):3443-55. https://dx.doi.org/10.1007/s43032-023-01289-7.

补充文件

附件文件
动作
1. JATS XML
2. Drawing. Main factors involved in the etiopathogenesis of uterine fibroids

下载 (1MB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».