Structural assessment of the fetal brain in late-onset fetal growth restriction using magnetic resonance imaging
- Authors: Stoliarova E.V.1, Kholin A.M.1, Syrkashev E.M.1, Khodzhaeva Z.S.1, Gus A.I.1,2
-
Affiliations:
- Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
- Patrice Lumumba Peoples' Friendship University of Russia
- Issue: No 2 (2025)
- Pages: 52-58
- Section: Original Articles
- URL: https://journal-vniispk.ru/0300-9092/article/view/291068
- DOI: https://doi.org/10.18565/aig.2024.257
- ID: 291068
Cite item
Abstract
Objective: To assess the volumes of fetal anatomical structures using magnetic resonance imaging (MRI) in pregnant women with late-onset fetal growth restriction (FGR) and small-for-gestational-age (SGA) fetuses.
Materials and methods: This prospective cohort study included 15 pregnant women with late-onset FGR and 15 pregnant women with SGA who underwent MRI. The control group consisted of nine pregnant women with appropriate-for-gestational-age fetuses. Using manual selection of the regions of interest, the volumes of the supratentorial brain and cerebellum were measured, and their ratios were calculated. Quantitative measurements of all the brain structures were converted to percentile values.
Results: The percentile values of supratentorial brain and cerebellum volumes were significantly smaller in the late-onset FGR group (p=0.004 and p<0.001, respectively). There were no statistically significant differences in the volume of the brain structures in the SGA group.
Conclusion: Fetuses with late-onset fetal growth restriction have reduced supratentorial brain and cerebellar volumes, as assessed by MRI, compared with controls. Placental insufficiency in late-onset FGR has a greater effect on brain volume than on birth weight. Further studies are needed to clarify the areas of interest in the brain and to determine their association with the severity and likelihood of reversibility of neurological deficits in newborns and infants with late-onset fetal growth restriction.
Full Text
##article.viewOnOriginalSite##About the authors
Elizaveta V. Stoliarova
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Author for correspondence.
Email: ev_stolyarova@oparina4.ru
ORCID iD: 0009-0001-2049-3119
PhD student, 1st Obstetric Department of Pregnancy Pathology
Russian Federation, 117997, Moscow, Ac. Oparin str., 4
Alexey M. Kholin
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Email: a_kholin@oparina4.ru
ORCID iD: 0000-0002-4068-9805
PhD, Head of the Department of Telemedicine
Russian Federation, 117997, Moscow, Ac. Oparin str., 4Egor M. Syrkashev
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Email: e_syrkashev@oparina4.ru
ORCID iD: 0000-0003-4043-907X
PhD, Senior Researcher at the Radiology Department
Russian Federation, 117997, Moscow, Ac. Oparin str., 4Zulfiya S. Khodzhaeva
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation
Email: z_khodzhaeva@oparina4.ru
ORCID iD: 0000-0001-8159-3714
Dr. Med. Sci, Professor, Deputy Director, Institute of Obstetrics
Russian Federation, 117997, Moscow, Ac. Oparin str., 4Aleksandr I. Gus
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation; Patrice Lumumba Peoples' Friendship University of Russia
Email: a_gus@oparina4.ru
ORCID iD: 0000-0003-1377-3128
Dr. Med. Sci., Chief Researcher at the Department of Ultrasound and Functional Diagnostics, Head of the Department of Ultrasound Diagnostics, Medical Institute of Patrice Lumumba Peoples’ Friendship University of Russia
Russian Federation, 117997, Moscow, Ac. Oparin str., 4; 117198, Moscow, Miklukho-Maklaya st., 6References
- Peasley R., Rangel L.A.A., Casagrandi D., Donadono V., Willinger M., Conti G. et al. Management of late-onset fetal growth restriction: pragmatic approach. Ultrasound Obstet. Gynecol. 2023; 62(1): 106-14. https://dx.doi.org/10.1002/uog.26190.
- Dudink I., Hüppi P.S., Sizonenko S.V., Castillo-Melendez M., Sutherland A.E., Allison B.J. et al. Altered trajectory of neurodevelopment associated with fetal growth restriction. Exp. Neurol. 2022; 347: 113885. https://dx.doi.org/10.1016/ j.expneurol.2021.113885.
- Malhotra A., Allison B.J., Castillo-Melendez M., Jenkin G., Polglase G.R., Miller S.L. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front. Endocrinol. (Lausanne). 2019; 10: 55. https:// dx.doi.org/10.3389/fendo.2019.00055.
- Kamphof H.D., Posthuma S., Gordijn S.J., Ganzevoort W. Fetal growth restriction: mechanisms, epidemiology, and management. Matern. Fetal Med. 2022; 4(3): 186-96. https://dx.doi.org/10.1097/FM9.0000000000000161.
- Araujo Júnior E., Zamarian A.C., Caetano A.C., Peixoto A.B., Nardozza L.M. Physiopathology of late-onset fetal growth restriction. Minerva Obstet. Gynecol. 2021; 73(4): 392-408. https://dx.doi.org/10.23736/S2724-606X.21.04771-7.
- Misan N., Michalak S., Kapska K., Osztynowicz K., Ropacka-Lesiak M. Blood-brain barrier disintegration in growth-restricted fetuses with brain sparing effect. Int. J. Mol. Sci. 2022; 23(20): 12349. https://dx.doi.org/10.3390/ijms232012349.
- Benítez-Marín M.J., Marín-Clavijo J., Blanco-Elena J.A., Jiménez-López J., González-Mesa E. brain sparing effect on neurodevelopment in children with intrauterine growth restriction: a systematic review. Children (Basel). 2021; 8(9): 745. https://dx.doi.org/10.3390/children8090745.
- Figueras F., Cruz-Martinez R., Sanz-Cortes M., Arranz A., Illa M., Botet F. et al. Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound Obstet. Gynecol. 2011; 38(3): 288-94. https://dx.doi.org/10.1002/uog.9041.
- Polat A., Barlow S., Ber R., Achiron R., Katorza E. Volumetric MRI study of the intrauterine growth restriction fetal brain. Eur. Radiol. 2017; 27(5): 2110-8. https://dx.doi.org/10.1007/s00330-016-4502-4.
- Bruno C.J., Bengani S., Gomes W.A., Brewer M., Vega M., Xie X. et al. MRI differences associated with intrauterine growth restriction in preterm infants. Neonatology. 2017; 111(4): 317-23. https://dx.doi.org/10.1159/000453576.
- Zheng W., Yan G., Jiang Y., Bao Z., Li K., Deng M. et al. Diffusion-Weighted MRI of the fetal brain in fetal growth restriction with maternal preeclampsia or gestational hypertension. J. Magn. Reson. Imaging. 2024; 59(4): 1384-93. https://dx.doi.org/10.1002/jmri.28861.
- Hutter J., Al-Wakeel A., Kyriakopoulou V., Matthew J., Story L., Rutherford M. Exploring the role of a time-efficient MRI assessment of the placenta and fetal brain in uncomplicated pregnancies and these complicated by placental insufficiency. Placenta. 2023; 139: 25-33. https://dx.doi.org/10.1016/ j.placenta.2023.05.014.
- Министерство здравоохранения Российской Федерации. Клинические рекомендации. Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). 2022. [Ministry of Health of the Russian Federation. Clinical guidelines. Insufficient growth of the fetus, requiring the provision of medical care to the mother (fetal growth retardation). 2022. (in Russian)].
- Kyriakopoulou V., Vatansever D., Davidson A., Patkee P., Elkommos S., Chew A. et al. Normative biometry of the fetal brain using magnetic resonance imaging. Brain Struct. Funct. 2017; 222(5): 2295-307. https://dx.doi.org/10.1007/s00429-016-1342-6.
- Husen S.C., Koning I.V., Go A.T.J.I., van Graafeiland A.W., Willemsen S.P., Groenenberg I.A.L. et al. Three-dimensional ultrasound imaging of fetal brain fissures in the growth restricted fetus. PLoS One. 2019; 14(5): e0217538. https://dx.doi.org/10.1371/journal.pone.0217538.
- Andescavage N., duPlessis A., Metzler M., Bulas D., Vezina G., Jacobs M. et al. In vivo assessment of placental and brain volumes in growth-restricted fetuses with and without fetal Doppler changes using quantitative 3D MRI. J. Perinatol. 2017; 37(12): 1278-84. https://dx.doi.org/10.1038/jp.2017.129.
- Egaña-Ugrinovic G., Sanz-Cortes M., Figueras F., Bargalló N., Gratacós E. Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction. Am. J. Obstet. Gynecol. 2013; 209(2): 126.e1-8. https://dx.doi.org/10.1016/j.ajog.2013.04.008.
- Limperopoulos C. The vulnerable immature cerebellum. Semin. Fetal. Neonatal. Med. 2016; 21(5): 293-4. https://dx.doi.org/10.1016/J.SINY.2016.07.002.
- Sanz-Cortes M., Egaña-Ugrinovic G., Zupan R., Figueras F., Gratacos E. Brainstem and cerebellar differences and their association with neurobehavior in term small-for-gestational-age fetuses assessed by fetal MRI. Am. J. Obstet. Gynecol. 2014; 210(5): 452.e1-8. https://dx.doi.org/10.1016/j.ajog.2013.12.008.
- Martinez J., Boada D., Figueras F., Meler E. How to define late fetal growth restriction. Minerva Obstet. Gynecol. 2021; 73(4): 409-14. https:// dx.doi.org/10.23736/S2724-606X.21.04775-4.
- Thilaganathan B. Ultrasound fetal weight estimation at term may do more harm than good. Ultrasound Obstet. Gynecol. 2018; 52(1): 5-8. https:// dx.doi.org/10.1002/uog.19110.
- Andescavage N., Bullen T., Liggett M., Barnett S.D., Kapse A., Kapse K. et al. Impaired in vivo feto-placental development is associated with neonatal neurobehavioral outcomes. Pediatr. Res. 2023; 93(5): 1276-84. https:// dx.doi.org/10.1038/s41390-022-02340-0.
- Graz M.B., Tolsa J.F., Fumeaux C.J.F. Being small for gestational age: does it matter for the neurodevelopment of premature infants? A cohort study. PLoS One. 2015; 10(5): e0125769. https://dx.doi.org/10.1371/journal.pone.0125769.
- Vollmer B., Edmonds C.J. School age neurological and cognitive outcomes of fetal growth retardation or small for gestational age birth weight. Front. Endocrinol. (Lausanne). 2019; 10: 186. https://dx.doi.org/10.3389/fendo.2019.00186.
Supplementary files
