Improvement of Methods for Studying the Electrophysicala Viscous Properties of Liquids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To control the physical properties of polar and nonpolar liquid media, the parameters of model systems based on paraffin and silicone oils, as well as glycerin, were measured using electrophysical and acoustoelectric methods. Electrophysical studies were performed with an Agilent E4980A LCR meter and a measuring cell consisting of an Eppendorf tube and two coaxial nickel electrodes forming a cylindrical capacitor. The permittivity of the liquid was determined from the formula for the capacitor. For the acoustic part of the problem, ST,X-quartz was used as the piezoelectric plate, on which a fluoroplastic cell for liquid was placed. The measurements were carried out in three stages: measurement of the phase and amplitude of the acoustic wave (i) without contact with the liquid, (ii) in contact with a pure test liquid, and (iii) in contact with the test liquid with a filler. Microparticles of pharmaceutical activated carbon and the surfactant sorbitan monooleate were used as fillers. The viscosity of the suspensions was determined from the difference between the attenuation of an acoustic wave in the presence of the pure liquid and liquid with filler.

About the authors

E. S. Shamsutdinova

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009, Moscow, Russia

Email: shes1996@bk.ru
Россия, 125009, Москва, ул. Моховая 11, корп. 7

V. I. Anisimkin

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009, Moscow, Russia

Email: anis@cplire.ru
Россия, 125009, Москва, ул. Моховая 11, корп. 7

A. S. Fionov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009, Moscow, Russia

Email: fionov@cplire.ru
Россия, 125009, Москва, ул. Моховая 11, корп. 7

A. V. Smirnov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009, Moscow, Russia

Email: andre-smirnov-v@yandex.ru
Россия, 125009, Москва, ул. Моховая 11, корп. 7

V. V. Kolesov

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009, Moscow, Russia

Email: kvv@cplire.ru
Россия, 125009, Москва, ул. Моховая 11, корп. 7

I. E. Kuznetsova

Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009, Moscow, Russia

Author for correspondence.
Email: kuziren@yandex.ru
Россия, 125009, Москва, ул. Моховая 11, корп. 7

References

  1. Das S.K., Choi S.U.S., Yu W.H., Pradeep T. Nanofluids: science and technology. John Wiley & Sons, 2007.
  2. Zhu F., Wang B., Qian Z., Kuznetsova I., Ma T. Influence of surface conductivity on dispersion curves, mode shapes, stress, and potential for Lamb waves propagating in piezoelectric plate // IEEE Trans. on Ultrason. Ferroelectr. Freq. Control. 2019. V. 67. № 4. P. 855–862. https://doi.org/10.1109/TUFFC.2019.2954745
  3. Borodina I.A., Zaitsev B.D., Teplykh A.A. Effect of the conductivity of a thin film located near the acoustic delay line on the characteristics of propagating SH0 wave // Ultrasonics. 2018. V. 91. P. 62–67. https://doi.org/10.1016/j.ultras.2018.07.017
  4. Croenne C., Vasseur J.O., Matar O.B., Hladky-Hennion A.C., Dubus B. Non-reciprocal behavior of one-dimensional piezoelectric structures with space-time modulated electrical boundary conditions // J. Appl. Phys. V. 126. № 14. https://doi.org/10.1063/1.5110869
  5. Filipiak J., Marc P. Surface acoustic wave vibration sensor as a seismometer // Sens. Actuators A. V. 323. 112653. https://doi.org/10.1016/j.sna.2021.112653
  6. Джоши С.Г., Зайцев Б.Д., Кузнецова И.Е., Кузнецова А.С. Гравиметрическая чувствительность акустических волн в пьезоэлектрических пластинах // Радиотехника и электроника. 2005. Т. 50. № 6. С. 707–711.
  7. Казаков Л.И. О распространении звука в дисперсных средах // Акуст. журн. 2018. Т. 64. № 3. С. 330–341. https://doi.org/10.7868/S0320791918030097
  8. Guo F.L., Sun R. Propagation of Bleustein–Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid // Int. J. Solids and Structures. 2008. V. 45. № 13. P. 3699–3710. https://doi.org/10.1016/j.ijsolstr.2007.09.018
  9. Kobayashi S., Kondoh J. Feasibility study on shear horizontal surface acoustic wave sensors for engine oil evaluation // Sensors. V. 20. № 8. 2184. https://doi.org/10.3390/s20082184
  10. Казаков Л.И. Резино-жидкостный резонатор // Акуст. журн. 2020. Т. 66. № 4. С. 357–365. https://doi.org/10.31857/S0320791920020033
  11. Wang W.Y., Zhang C., Zhang Z.T., Liu Y., Feng G.P. Three operation modes of lateral-field-excited piezoelectric devices // Appl. Phys. Lett. 2008. V. 93. № 24. 242906. https://doi.org/10.1063/1.3050538
  12. Qin L.F., Chen Q.M., Cheng H.B., Chen Q., Li J.F., Wang Q.M. Viscosity sensor using ZnO and AlN thin film bulk acoustic resonators with tilted polar c-axis orientations // J. Appl. Phys. 2011. V. 110. № 9. 094511. https://doi.org/10.1063/1.3657781
  13. Анисимкин А.В., Покусаев Б.Г., Складнев Д.А., Сорокин В.В., Тюпа Д.В. Применение акустоэлектронной методики для исследования упорядоченных микроструктурированных дисперсных систем с биологическими объектами, включенными в гидрогель // Акуст. журн. 2016. Т. 62. №. 6. С. 738–743. https://doi.org/10.7868/S0320791916060010
  14. Минаков А.В., Пряжников М.И., Дамдинов Б.Б., Немцев И.В. Исследование объемной вязкости наносуспензий методом акустической спектроскопии // Акуст. журн. 2022. Т. 68. №. 2. С. 182–189. https://doi.org/10.31857/S0320791922020058
  15. Kondoh J., Nakayama K., Kuznetsova I. Study of frequency dependence of shear horizontal surface acoustic wave sensor for engine oil measurements // Sens. Actuators A. V. 325. 112503. https://doi.org/10.1016/j.sna.2020.112503
  16. Ахметов Б.Р., Вахин А.В. О некоторых характеристиках затухания ультразвука в суспензиях высокомолекулярных компонентов нефти // Акуст. журн. 2018. Т. 64. № 5. С. 566–571. https://doi.org/10.1134/S0320791918050015
  17. Tomchenko M.D. Acoustic modes in He I and He II in the presence of an alternating electric field // J. Low Temp. Phys. V. 46. № 5. P. 490–501. https://doi.org/10.1063/10.0001053
  18. Zaitsev B.D., Teplykh A.A., Borodina I.A., Kuznetsova I.E., Verona E. Gasoline sensor based on piezoelectric lateral electric field excited resonator // Ultrasonics. V. 80. P. 96–100. https://doi.org/10.1016/j.ultras.2017.05.003
  19. Kuznetsova I.E., Zaitsev B.D., Seleznev E.P., Verona E. Gasoline identifier based on SH0 plate acoustic waves // Ultrasonics. V. 70. P. 34–37. https://doi.org/10.1016/j.ultras.2016.04.016
  20. Pu Y.Y., O’Shea N., Hogan S.A., Tobin J.T. Assessment of a solid-state bulk acoustic wave sensor to measure viscosity of Newtonian and Non-Newtonian fluids under static and flow conditions // J. Food Eng. T. 277. https://doi.org/10.1016/j.jfoodeng.2020.109917
  21. Ахадов Я.Ю. Диэлектрические свойства чистых жидкостей. М.: Изд-во МАИ, 1999. 854 с.
  22. Dukhin A.S., Goetz P.J. How non-ionic “electrically neutral” surfactants enhance electrical conductivity and ion stability in non-polar liquids // J. Electroanal. Chem. 2006. V. 588. № 1. P. 44–50. https://doi.org/10.1016/j.jelechem.2005.12.001
  23. Guo Q., Singh V., Behrens S.H. Electric charging in nonpolar liquids because of nonionizable surfactants // Langmuir. 2010. V. 26. №. 5. P. 3203–3207. https://doi.org/10.1021/la903182e
  24. Chattopadhyay A., Dhar P. Dielectric relaxation behaviors and dissipation characteristics of colloidal nanocarbon (graphene and CNTs) complex fluids // J. Appl. Phys. 2019. V. 125. № 3. P. 034103. https://doi.org/10.1063/1.5079327
  25. Anisimkin V.I., Voronova N.V. New modification of the acoustic Lamb waves and its application for liquid and ice sensing // Ultrasonics. 2021. V. 116. 106496. https://doi.org/10.1016/j.ultras.2021.106496
  26. Weast R.C., Astle M.J., Beyer W.H. Chemical Rubber Company Handbook of Chemistry and Physics, 66th ed. Chemical Rubber. Boca Raton. FL. 1985. P. D232.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (295KB)
3.

Download (154KB)
4.

Download (77KB)
5.

Download (133KB)
6.

Download (302KB)
7.

Download (84KB)
8.

Download (103KB)

Copyright (c) 2023 Е.С. Шамсутдинова, В.И. Анисимкин, А.С. Фионов, А.В. Смирнов, В.В. Колесов, И.Е. Кузнецова

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».