The Role of Asymmetry of the Left and Right External Ear of Bottlenose Dolphin (Tursiops truncatus) in the Spatial Localization of Sound

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is generally accepted that Odontoceti lost their external ears (pinnae) in the process of adapting to aquatic habitats. However, their hearing localizes sound with an accuracy of 1° in the frontal and median planes and is directional. These facts indicate the presence of morphological structures functionally performing the role of evolutionarily new external ears adapted to the aquatic environment. The data available to date suggest that this role is played by the left and right row of mental foramens (MFs) and the morphological structures of the rostrum and skull of the dolphin. In this study, for the first time for Odontoceti, the paths of sound travel along MFs and mandibular canals of the lower jaw of bottlenose dolphin (Tursiops truncatus) are measured, and the relative time delays of sound between the MF and the degree of their acoustic shielding by the rostrum and skull depending on the localization of sound in space are calculated. It was established that the left and right outer ear form unique temporal and spectral signs of the spatial localization of sound with a maximal accuracy realized rostrally. Localization mechanisms are based on asymmetry, including rostral–caudal and left–right mutually complementary asymmetry of MF architecture, dorsal–ventral asymmetry in the size of the rostrum, as well as rostral–ventral asymmetry in the position of the left and right row of MFs on the rostrum and rostral–caudal asymmetry in the sizes of the rostrum and skull. Thus, unlike the outer ears of terrestrial animals and human beings limited by the auricles, the outer ears of the dolphin are integrated into the streamlined shape of the rostrum and head of the dolphin, which reduces the resistance to its movement from the water side and, most importantly, does not worsen the signal-to-noise ratio of the flow around it in its hearing with increasing speed. Based on the morphology similarity of Odontoceti, it is natural to assume that their MFs and the morphological structures of the rostrum and skull play the role of external ears and form signs of spatial localization of sounds.

作者简介

V. Ryabov

Vyazemsky Karadag Scientific Station—Natural Reserve of Russian Academy of Sciences, Branch of Federal Research Center “Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences”, 298188, Feodosiya, Russia

编辑信件的主要联系方式.
Email: ryabofff@inbox.ru
Россия, 298188, п. Курортное, ул. Науки 24

参考

  1. Renaud D.L., Popper A.N. Sound localization by the bottlenose porpoise Tursiops truncates // J. Exp. Biol. 1975. V. 63. P. 569–585.
  2. Королев Л.Д., Липатов Н.В., Резвов Р.Н., Савельев М.А., Фленов А.Б. Исследование возможностей локационного аппарата дельфинов при пассивной локации // Реф. Докл. 8-ой Всес. акуст. конф. М., 1973. Т. 1. С. 125–126.
  3. Branstetter B.K., Mevissen S.J., Herman L.M. et al. Horizontal angular discrimination by an echolocating bottlenose dolphin Tursiops truncates // Bioacoustics. 2003. № 14. P. 15–34.
  4. Simmons J.A., Kick S.A., Lawrence B.D., Hale C., Bard C., Escudie B. Acuity of horizontal angular discrimination by the echolocating bat, Eptesicus fuscus // J. Comparative Physiology. 1983. V. 153. P. 321–330.
  5. Blauert J. Spatial hearing: the psychophysics of human sound localization. MA: MIT Press, Cambridge, 1997.
  6. Warren R.M. Auditory perception: A new analysis and synthesis. UK: Cambridge University Press, Cambridge, 1999.
  7. Butler R.A., Humanski R.A., Musicant A.D. Binaural and monaural localization of sound in two-dimensional space // Perception. 1990. V. 19. P. 241–256.
  8. Gardner M.B. Some monaural and binaural factors of median plane localization // J. Acoust. Soc. Am. 1973. V. 54. № 6. P. 1489–1495.
  9. Butler R.A. The influence of the external and middle ear on auditory discrimination // Handbook of sensory physiology. Berlin: Springer-Verlag, 1975. V. 5(2). P. 247–260.
  10. Gorlinsky I.A., Konstantinov A.I. Auditory localization of ultrasonic source by Rhinolophus ferrum-equinum // Proc. of the forth Intern. Bat Res. Conf. Nairobi. 1978. P. 145–153.
  11. Norberg R.A. Occurrence and independent evolution of bilateral ear asymmetry in owls and implications on owl taxonomy // Phil. Trans. Roy. Soc. Lond. Ser. B. 1977. V. 280. P. 375–408.
  12. Knudsen E.I., Konishi M. Mechanisms of sound localization in the barn owl (Tyto alba) // J. Comp. Physiol. A. 1979. V. 133. P. 13–21.
  13. Ketten D.R. Functional analyses of whale ears: Adaptations for underwater hearing // IEEE. Proc. Underwater Acoustics. 1994. V. 1. P. 264–270.
  14. Au W.W.L., Moore P.W.B. Receiving beam patterns and directivity indices of the Atlantic bottlenose dolphin Tursiops truncates // J. Acoust. Soc. Am. 1984. V. 75. № 1. P. 255–262.
  15. Романенко Е.В. Акустика дельфинов и рыб (обзор) // Акуст. журн. 2019. Т. 65. № 1. С. 82–92.
  16. Fraser F.C., Purves P.E. Hearing in the cetaceans: Evolution of the accessory air sacs and the structure and function of the outer and middle ear in recent cetaceans // Bull. Brit. Museum Nat. History, Zool. 1960. V. 7. № 1. P. 1–140.
  17. Norris K.S. The evolution of acoustic mechanisms in odontocete cetaceans // Evolution and Environment / Ed. Drake E. New Haven: Yale Univ. Press., 1968. P. 297–324.
  18. Popov V.V., Supin A.Ya., Klishin V.O. et al. Evidence for double acoustic windows in the dolphin, Tursiops truncatus // J. Acoust. Soc. Am. 2008. V. 123. № 1. P. 552–560.
  19. Cranford T.W., Krysl P., Hildebrand J.A. Acoustic pathways revealed: simulated sound transmission and reception in Cuvier’s beaked whale (Ziphius cavirostris) // Bioinspir. Biomimet. 2008. V. 3. P. 1–10.
  20. Ryabov V.A. A dolphin lower jaw is hydro acoustic antenna of the traveling wave / Abstracts of 146 meeting of ASA // J. Acoust. Soc. Am. 2003. V. 1144. P. 2414–2415.
  21. Ryabov V.A. Lower jaw – peripheric part of the dolphin echolocation hearing // Collection of scientific papers after the third Int. Conf. Marine Mammals Of The Holarctic, October 11–17, 2004, Koktebel, Crimea. Moscow, 2004. P. 483–489.
  22. Ryabov V.A. Role of the mental foramens in dolphin hearing // Natural Science. 2010. V. 2. № 6. P. 646–653. https://doi.org/10.4236/ns.2010.26081
  23. Ryabov V.A. Mechanisms of sound reception and conduction in the dolphin // Biophysics. 2014. 59. № 3. P. 475–483.
  24. Ryabov V.A. The effect of acoustic shielding of the region of a dolphin’s mental foramina on its hearing sensitivity // St. Petersburg Polytechnical Univ. J.: Phys. Math. 2016. V. 2. P. 240–246. https://doi.org/10.1016/j.spjpm.2016.08.003
  25. Агарков Г.Б., Хоменко Б.Г., Хаджинский В.Г. Морфология дельфинов. Киев: Наукова думка, 1974. 167 с.
  26. Barroso C., Cranford T.W., Berta A. Shape analysis of odontocete mandibles: Functional and evolutionary implications // J. Morphol. 2012. V. 273. № 9. P. 1021–1030. https://doi.org/10.1002/jmor.20040
  27. Varanasi U., Malins D.C. Unique lipids of the porpoise (Tursiops gilli): differences in triacyclglycerols and wax esters of acoustic (mandibular and melon) and blubber tissues // Biochimica et Biophysica Acta. 1971. V. 231. P. 415–418.
  28. Ketten D.R. The marine mammal ear: Specializations for aquatic audition and echolocation // The biology of hearing / Eds. Webster D., Fay R., Popper A. New York.: Springer-Verlag, 1992. V. 13. № 2. P. 43–49.
  29. Ridgway S.H., Au W.W.L. Hearing and Echolocation in Dolphins // Encyclopedia of Neuroscience. 2009. V. 4. P. 1031–1039. https://doi.org/10.1016/B978-008045046-9.00263-1
  30. Au W.W.L. The sonar of dolphins. New York: Springer-Verlag, 1993. 277 p.
  31. Moore P.W.B., Pawloski D.A., Dankiewicz L.A. Interaural time and intensity difference thresholds in the bottlenose dolphin (Tursiops truncatus) / Eds. Kastelein R.A., Thomas J.A., Nachtigall P.E. Sensory systems of aquatic mammals. Woerden, The Netherlands: De Spil, 1995. P. 11–23.
  32. Иванов М.П., Бутов С.Н., Леонова Л.Е., Романовская Е.В., Стефанов В.Е. Апробация лабораторного макета регистрации сигналов дельфинов с расширенной полосой частот сквозного тракта // Акуст. журн. 2019. Т. 65. № 5. С. 699–707.
  33. Rossbach K.A., Herzing D.L. Underwater observations of benthic-feeding bottlenose dolphins (Tursiops truncatus) near Grand Bahama Island, Bahamas // Marine Mammal Science. 1997. V. 13. P. 498–504.
  34. Пятецкий В.Е., Шакало В.М. Режим течения в пограничном слое модели дельфина // Бионика. Киев: Наукова думка, 1975. Т. 9. С. 46–50.
  35. Романенко Е.В., Янов Е.Г. Измерение скорости обтекания морских животных // Морские млекопитающие. Результаты исследований. М.: Наука, 1978. С. 241–245.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1022KB)
3.

下载 (121KB)
4.

下载 (112KB)
5.

下载 (802KB)
6.

下载 (114KB)
7.

下载 (437KB)
8.

下载 (90KB)

版权所有 © В.А. Рябов, 2022

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».