Determining the Distance to an Underwater Source in Convergence Zones
- Authors: Lobodin I.E.1, Mashoshin A.I.1
-
Affiliations:
- Electropribor Central Research Institute JSC
- Issue: Vol 70, No 2 (2024)
- Pages: 217-224
- Section: АКУСТИКА ОКЕАНА. ГИДРОАКУСТИКА
- URL: https://journal-vniispk.ru/0320-7919/article/view/261552
- DOI: https://doi.org/10.31857/S0320791924020091
- EDN: https://elibrary.ru/YNGCQA
- ID: 261552
Cite item
Full Text
Abstract
An algorithm has been substantiated for determining the distance to noisy sources in the passive sonar in convergence zones, which are observed in most deep-sea areas of the World Ocean. The algorithm is based on the well-known pattern of formation of the ray structure of the acoustic field of the source signal at the input of the receiving antenna. This pattern is that when a source enters a convergence zone by crossing its near boundary, the maximum energy of its signal arrives at the antenna along rays with negative grazing angles, and when a source enters a convergence zone by crossing its far boundary, along rays with positive grazing angles. The accuracy of determining the distance using the proposed algorithm in the case of detection of surface and underwater sources is assessed.
Full Text
ВВЕДЕНИЕ
Одной из актуальных практических задач гидроакустики является определение дистанции до источника звука в пассивном режиме работы шумопеленгаторной станции (ШПС). Наибольшую остроту эта задача приобретает применительно к гидроакустическим условиям дальних зон акустической освещенности (ДЗАО), поскольку условия ДЗАО наблюдаются в большинстве глубоководных районов Мирового океана [1, 2].
Трудность определения дистанции до источника в условиях ДЗАО объясняется тем, что известные пассивные методы определения дистанции, обзор которых приведен в [3], в этих условиях не обеспечивают нужной точности ввиду больших расстояний между источником и приемником и малых отношений сигнал/помеха (ОСП), препятствующих измерению ряда информативных параметров сигнала, либо вообще не работоспособны. Остановимся на данном тезисе подробнее.
Энергетический метод позволяет определить дистанцию, в лучшем случае, с точностью до номера ДЗАО. Трудность применения спектрального метода состоит в недостаточной эффективной ширине спектра сигнала, принимаемого на большом расстоянии от источника. Условием использования лучевого и вертикального разностно-дальномерного методов является высокоточное определение углов прихода в вертикальной плоскости сигнала источника, что на практике при приеме сигнала на больших дистанциях реализовать затруднительно. Скорость изменения горизонтального угла прихода сигнала (пеленга) не является информативной, поскольку на рассматриваемых дистанциях ошибка измерения пеленга, как правило, превышает величину его изменения за время наблюдения. Для применения горизонтального разностно-дальномерного метода необходимо наличие нескольких приемных антенн, разнесенных по горизонту на величину, составляющую не менее 5% от измеряемой дистанции, что возможно только при использовании специфических приемных систем.
Данный анализ приводит к выводу о необходимости разработки применительно к условиям ДЗАО специального метода пассивного определения дистанции до источника. В статье приводятся результаты разработки такого метода.
1. ОБОСНОВАНИЕ МЕТОДА
Явление ДЗАО или зон конвергенции было открыто в середине прошлого века [4, 5] и с тех пор продолжает изучаться [6–15].
Для существования ДЗАО должны выполняться следующие условия [10]:
- глубина моря более 2 км;
- наличие подводного звукового канала (ПЗК);
- скорость звука на глубинах погружения источника и приемника должна быть меньше скорости звука у дна;
- источник или приемник должен находиться по глубине вне ПЗК.
Условия ДЗАО характеризуются чередованием зон акустической освещенности и зон акустической тени, привязанных к местоположению приемника и движущихся вместе с ним. Первая зона освещенности с протяженностью в несколько километров, примыкающая к местоположению приемника, носит название ближней зоны освещенности, остальные зоны освещенности называются дальними зонами акустической освещенности и нумеруются. 1-я ДЗАО в зависимости от глубины залегания оси ПЗК и глубин источника и приемника располагается на расстоянии от 40 до 70 км от приемника, причем ширина 1-й ДЗАО возрастает с величиной заглубления приемника. Ширина последующих ДЗАО увеличивается относительно ширины 1-й ДЗАО кратно своему номеру. В результате, начиная с некоторого номера, ДЗАО сливаются, образуя сплошную акустическую освещенность. Отдельные ДЗАО могут расщепляться на две.
Рассмотрение различных подходов к решению поставленной задачи привело к выводу, что решение следует искать в особенностях распространения акустического сигнала в условиях ДЗАО.
Рассмотрим известный механизм формирования на входе приемника лучевой структуры сигнала источника и шумов моря в условиях ДЗАО [10].
Для конкретности выберем одни из наиболее распространенных условий ДЗАО с глубиной залегания оси ПЗК около 800 м, характерные для центральной части Тихого океана [1]. Соответствующее этим условиям вертикальное распределение скорости звука (ВРСЗ) изображено на рис. 1а и 2а.
Рис. 1. Лучевая структура в условиях ДЗАО поля сигнала источника, находящегося на глубине 10 м, на входе приемника, расположенного на глубине 100 м. (а) – ВРСЗ, (б) – лучевая картина поля сигнала на входе приемника, (в) – угловая структура поля сигнала, (г) – аномалия распространения сигнала.
Рис. 2. Лучевая структура в условиях ДЗАО поля сигнала источника, находящегося на глубине 100 м, на входе приемника, расположенного на глубине 400 м. (а) – ВРСЗ, (б) – лучевая картина поля сигнала на входе приемника, (в) – угловая структура поля сигнала, (г) – аномалия распространения сигнала.
На рис. 1б, 1в, 1г и 2б, 2в, 2г изображена рассчитанная с использованием лучевой программы [16] лучевая структура сигнала источника на входе приемника, охватывающая интервал расстояний между источником и приемником от 0 до 80 км, включающий ближнюю и 1-ю ДЗАО. На рис. 1 глубины источника и приемника составляют 10 и 100 м соответственно, на рис. 2 – 100 и 400 м. На рис. 1б и 2б приведены траектории лучей, распространяющихся от источника к приемнику. По оси абсцисс отложено расстояние между источником и приемником, по оси ординат – глубина. Причем, чтобы сделать траектории лучей различимыми, на рисунок нанесена траектория только каждого пятого из пятисот рассчитанных лучей.
На рис. 1в и 2в изображена угловая структура поля сигнала источника на входе приемника. Ось абсцисс – расстояние между источником и приемником, ось ординат – угол скольжения луча на входе приемника.
На рис. 1г и 2г приведена зависимость от расстояния между источником и приемником суммарной аномалии всех лучей, пришедших на вход приемника.
При совместном рассмотрении графиков, приведенных на каждом рисунке, можно сделать следующие выводы.
Несмотря на значительное количество лучей, пришедших на вход приемника на всех дистанциях, вклад большинства лучей в суммарную интенсивность сигнала невелик ввиду потери энергии лучей при многократных отражениях от дна и поверхности, что проявляется в виде низких величин суммарной аномалии на протяжении бóльшей части дистанций. Аномалия резко возрастает на так называемых каустиках, находящихся в начале и середине ДЗАО и характеризующихся поступлением на вход приемника водных и однократно отразившихся от поверхности моря лучей с практически одинаковыми углами скольжения. При этом на ближней границе ДЗАО каустика формируется лучами, пришедшими снизу, а в середине ДЗАО – лучами, пришедшими сверху относительно горизонтальной плоскости. Это хорошо видно по нижним графикам. На рис. 1, соответствующем глубине источника 10 м и глубине приемника 100 м, до дистанции 58.9 км имеет место зона тени, которая сменяется зоной освещенности при появлении на входе приемника двух лучей с высокой энергией с углом скольжения минус 8.3°. На дистанции 61.5 км эти лучи исчезают, но появляются два новых луча с высокой энергией с углом скольжения плюс 8.3°, которые существуют вплоть до дистанции 66 км, соответствующей дальней границе 1-й ДЗАО. На рис. 2, соответствующем глубине источника 100 м и глубине приемника 400 м, наблюдается аналогичная картина: на дистанции 52.3 км появляются два луча с высокой энергией с углами скольжения минус 11.9°, которые существуют до дистанции 59.1 км, на которой вместо них появляются два луча с высокой энергией с углом скольжения плюс 11.9°, которые существуют до дистанции 67.3 км, соответствующей дальней границе 1-й ДЗАО. Описанные закономерности сохраняются и для других ДЗАО.
Из проведенного рассмотрения следует важный вывод, заключающийся в том, что, обнаружив источник сигнала, вошедший в ДЗАО, по знаку угла прихода максимума его сигнала можно определить, через ближнюю либо дальнюю границу он вошел в ДЗАО. А поскольку расстояние до границ ДЗАО поддается расчету, можно определить дистанцию до источника.
Теперь рассмотрим, как влияют шумы моря на рассматриваемую задачу. Как известно [10], шумы моря имеют вертикальную анизотропию, которая зависит от гидроакустических условий, заглубления приемника и частоты. Причем из всех гидроакустических условий анизотропия шумов моря наиболее выражена в условиях ДЗАО и при этом в благоприятную сторону для обнаружения объектов. Покажем это.
Наиболее распространенной моделью шумов моря является модель Крона и Шермана [17], согласно которой поле шумов моря формируется независимыми источниками, расположенными на поверхности моря. Этой модели соответствует нормированный пространственно-частотный спектр шумов моря вида [18]:
(1)
где – углы скольжения у поверхности и дна луча, приходящего на вход приемника под углом ; – коэффициенты отражения этого луча от поверхности и дна соответственно; – расстояние по этому лучу между его соседними выходами к поверхности; – расстояния по этому лучу до его первого выхода к поверхности (если луч пришел к антенне сверху либо снизу соответственно); – коэффициент, определяющий ширину характеристики направленности элементарных шумовых источников звука на поверхности (m = 1…3); – коэффициент пространственного затухания.
На рис. 3 приведен нормированный пространственно-частотный спектр шумов моря на входе приемника, рассчитанный с использованием лучевой программы [16] по формуле (1) для гидроакустических условий, соответствующих рис. 2, заглублению приемника 400 м для трех частот 0.5, 2.5 и 5.0 кГц.
Рис. 3. Пространственный спектр шумов моря на входе приемной антенны (параметр графиков – частота, кГц).
Из рассмотрения рис. 3 следует, что в вертикальном пространственном спектре шумов моря на углах, примыкающих к горизонтальному направлению, имеется ярко выраженный минимум шириной порядка 20°. Однако, чтобы в полной мере воспользоваться этим минимумом, антенна приемника должна иметь достаточно узкие (в единицы градусов) характеристики направленности в вертикальной плоскости. На практике, как правило, прием осуществляется на антенны с достаточно широкими характеристиками направленности в вертикальной плоскости, ввиду чего глубокий минимум в горизонтальном направлении в пространственном спектре шумов моря сглаживается. На рис. 4 показан соответствующий рис. 3 пространственный спектр шумов моря на выходе приемной антенны, имеющей ширину характеристики направленности в вертикальной плоскости на частотах 0.5, 2 и 5 кГц соответственно 50°, 12.5° и 5°.
Рис. 4. Пространственный спектр шумов моря на выходе приемной антенны (параметр графиков – частота, кГц).
Из рассмотрения рис. 4 следует, что на углах –9°…+6°, под которыми на границах ДЗАО на вход приемной антенны приходят лучи с высокой энергией источника, наблюдается минимум интенсивности шумов моря, что благоприятно сказывается на обнаружении источника и определении дистанции до него.
Таким образом, описанная выше закономерность формирования акустического поля сигнала в условиях ДЗАО может быть положена в основу алгоритма определения дистанции до источника при выполнении следующих условий:
- сигнал источника должен быть обнаружен, для чего ОСП на выходе приемника должно превышать 3…7 дБ в зависимости от применяемого алгоритма обнаружения;
- разрешающая способность приемной антенны должна быть не хуже 5°, чтобы позволить определить знак угла прихода максимума энергии сигнала источника;
- должен быть определен номер ДЗАО, в которой обнаружен источник. Номер ДЗАО может быть определен энергетическим методом [3] с использованием лучевой программы расчета дистанции до шумящего источника, если известна шумность источника. Задача определения номера ДЗАО облегчается тем, что шумность абсолютного большинства подводных источников позволяет обнаруживать их не дальше 1-й ДЗАО [19], а шумность надводных источников, определение дистанции до которых представляет практический интерес, как правило известна с точностью, превышающей отличие уровней сигнала источника, находящегося в двух соседних ДЗАО;
- для расчета дистанций до границ ДЗАО должна быть определена глубина источника. Для надводных источников такая проблема не стоит (при условии, что определено, что обнаруженный источник надводный [20]), а для подводных источников можно воспользоваться известной закономерностью, согласно которой сигнал на входе приемника максимален, если глубина приемника равна глубине источника [10];
- используемая лучевая программа расчета поля источника должна учитывать кривизну Земли [21].
2. АЛГОРИТМЫ ОПРЕДЕЛЕНИЯ ДИСТАНЦИИ ДО ИСТОЧНИКА
Допустим, что в условиях ДЗАО обнаружен источник и известными методами классификации [20] определено, является он надводным либо подводным. Далее задействуется соответствующий алгоритм определения дистанции до источника.
2.1. Алгоритм определения дистанции до надводного источника
- Заблаговременно измеряется ВРСЗ.
- Зная ВРСЗ и глубину приемника, с использованием лучевой программы расчета поля сигнала источника в диапазоне возможных расстояний между источником и приемником рассчитываются:
- расстояния от приемника до ближней и дальней границ каждой i-й ДЗАО;
- расстояние от приемника до точки в пределах каждой i-й ДЗАО , на которой угол скольжения наиболее интенсивного луча сигнала источника изменяет знак на противоположный;
- зависимость от частоты и дистанции в пределах каждой i-й ДЗАО суммарной аномалии распространения лучей , попадающих в раскрыв характеристики направленности приемной антенны, ориентированной на наиболее интенсивный луч.
- В момент обнаружения сигнала источника на выходе приемника измеряются:
- угол в вертикальной плоскости прихода максимума энергии сигнала ;
- приведенный ко входу антенны уровень сигнала на выходе характеристики направленности приемной антенны, ориентированной в направлении .
- Определяется номер m ДЗАО, в которой находится источник. Это достигается путем расчета энергетическим методом предполагаемой дистанции до источника и сравнением ее с рассчитанными границами разных ДЗАО. В качестве ДЗАО, в которой находится источник, принимается ДЗАО с номером m, которая удовлетворяет условиям
(2)
Расчет дистанции энергетическим методом осуществляется путем решения относительно R уравнения
(3)
где – зависимость уровня сигнала на входе приемной антенны от расстояния между источником и приемной антенной, рассчитываемая по формуле [11]
(4)
где – нижняя и верхняя граничные частоты приемного тракта, Гц; – известное среднее значение давления сигнала приповерхностного источника на частоте 1 кГц, в полосе 1 Гц, на расстоянии 1 м от источника, Па; – известное среднее значение показателя величины наклона спектра источника, безразмерная величина; – известная частотная зависимость пространственного затухания акустического сигнала в районе, дБ/км; R – расстояние между источником и приемником, км.
- Определяется дистанция до источника на момент его обнаружения как расстояние до границы ДЗАО, через которую источник вошел в ДЗАО:
(5)
Смысл формулы (5) заключается в том, что, если в момент обнаружения источника угол в вертикальной плоскости прихода максимума энергии сигнала отрицательный, то источник находится на ближней границе ДЗАО, и дистанция до него равна рассчитанному расстоянию до ближней границы m-й ДЗАО. Если же этот угол положительный, источник находится на дальней границе ДЗАО, и дистанция до него равна рассчитанному расстоянию до дальней границы m-й ДЗАО.
Предельная погрешность оценки дистанции определяется точностью расчета расстояний до границ ДЗАО, которая зависит от точности измерения ВРСЗ и неоднородности ВРСЗ на трассе между источником и приемником. Учитывая это, было проведено моделирование, при котором для расчета границ ДЗАО использовалось ВРСЗ, полученное путем наложения на истинное ВРСЗ аддитивных ошибок со среднеквадратическим отклонением 1 м/с и интервалом корреляции по глубине 20 м. Эта ошибка включает предельную погрешность измерения скорости звука, составляющую 0.5 м/с для современных высокоточных средств измерения [22], а также возможные флуктуации ВРСЗ под воздействием различных факторов. По 100 циклам моделирования была получена предельная погрешность оценки дистанции , которая для условий рис. 1 и 2 составила 5% от истинной дистанции до источника, что при нахождении источника в 1-й ДЗАО составляет 2.5 и 3.5 км в зависимости от того, на какой границе ДЗАО обнаружен источник. Для последующих ДЗАО предельная погрешность в километрах кратно возрастает.
- Для повышения точности оценки дистанции до источника организуется наблюдение за сигналом источника в интересах выявления момента времени , в который знак угла в вертикальной плоскости прихода максимума энергии сигнала изменился на противоположный. Дистанция до источника в этот момент времени оценивается как рассчитанное расстояние .
Точность оценки дистанции зависит от тех же факторов, что и точность оценки дистанции , но более устойчива к их влиянию. Проведенное моделирование показало, что предельная погрешность оценки не превышает 2.5% от истинной дистанции (1.5 км для условий рис. 1 при нахождении источника в 1-й ДЗАО).
2.2. Алгоритм определения дистанции до подводного источника
Ситуация обнаружения сигнала малошумного подводного источника отличается следующим:
- обнаруженный источник не может находиться дальше 1-й ДЗАО [19];
- должна быть определена не только дистанция, но и глубина источника.
Алгоритм определения дистанции и глубины обнаруженного малошумного подводного источника выглядит следующим образом.
- Заблаговременно измеряется ВРСЗ.
- В момент обнаружения сигнала источника на выходе приемника измеряются:
- глубина приемника ;
- угол в вертикальной плоскости прихода максимума энергии сигнала .
- Путем изменения глубины приемника в пределах возможного диапазона глубин источника определяется глубина, на которой уровень сигнала источника на выходе приемника максимален. Эта глубина принимается за глубину источника .
- Приемник погружается на глубину, превышающую на 100–200 м глубину источника .
- Зная ВРСЗ и глубины источника и приемника, с использованием лучевой программы расчета поля сигнала источника рассчитываются:
- расстояния от приемника до ближней и дальней границ 1-й ДЗАО;
- расстояние от приемника до точки в пределах 1-й ДЗАО , на которой угол скольжения наиболее интенсивного луча сигнала источника изменяет знак на противоположный.
- На выходе приемного тракта ШПС измеряется угол в вертикальной плоскости прихода максимума энергии сигнала .
- По формуле, аналогичной формуле (5), определяется дистанция до источника как расстояние до границы ДЗАО, через которую источник вошел в ДЗАО:
(6)
- Для повышения точности оценки дистанции до источника организуется наблюдение за сигналом источника в интересах выявления момента времени , в который знак угла в вертикальной плоскости прихода максимума энергии сигнала изменился на противоположный. В качестве дистанции до источника в этот момент времени принимается рассчитанное расстояние .
Проведенное моделирование показало, что в случае подводного источника вследствие наличия погрешности в определении его глубины предельная погрешность оценки дистанции составляет в среднем 7–8%, а дистанции – 3–4% (3.8–4.4 и 1.6–2.2 км для условий рис. 2 при нахождении источника в 1-й ДЗАО).
ЗАКЛЮЧЕНИЕ
Одной из актуальных практических задач гидроакустики является определение дистанции до источника сигнала в условиях дальних зон акустической освещенности (ДЗАО), которые наблюдаются в большинстве глубоководных районов Мирового океана.
В работе проанализированы известные закономерности формирования лучевой структуры поля сигнала источника звука в условиях ДЗАО. Эти закономерности состоят в том, что при вхождении источника в ДЗАО путем пересечения ее ближней границы максимум энергии его сигнала приходит на антенну по лучам с отрицательными углами скольжения, а при вхождении источника в ДЗАО путем пересечения ее дальней границы – по лучам с положительными углами скольжения. Причем расстояние от приемника до границ каждой ДЗАО, а также до точки внутри каждой ДЗАО, в которой угол в вертикальной плоскости прихода максимума энергии сигнала изменяет знак на противоположный, поддаются достаточно точному расчету с использованием лучевой программы расчета поля.
На основе установленных закономерностей предложены алгоритмы определения дистанции до надводного источника с предельной погрешностью от 2.5 до 5% и до подводного источника – от 3–4 до 7–8%.
Работа выполнена при поддержке Российского научного фонда (проект № 22-29-00320).
About the authors
I. E. Lobodin
Electropribor Central Research Institute JSC
Email: aimashoshin@mail.ru
Russian Federation, St. Petersburg
A. I. Mashoshin
Electropribor Central Research Institute JSC
Author for correspondence.
Email: aimashoshin@mail.ru
Russian Federation, St. Petersburg
References
- Кутько В.П., Галеркин Л.И., Моисеев Л.К., Олейников С.А., Панфилова С.Г., Степанов В.Н., Шербинин А.Д. Климатические характеристики скорости звука в северной части Тихого океана. М.: Московское отделение Гидрометеоиздата, 1981. 117 с.
- Кутько В.П., Галеркин Л.И., Олейников С.А., Панфилова С.Г., Степанов В.Н., Шербинин А.Д. Климатические характеристики скорости звука в северной части Атлантического океана. М.: Московское отделение Гидрометеоиздата, 1984. 146 с.
- Машошин А.И. Синтез оптимального алгоритма пассивного определения дистанции до цели // Морская радиоэлектроника. 2012. № 2 (40). С. 30–34.
- Ewing M., Worzel J.L. Long-Range Sound Transmission // Geol. Soc. Am. 1948. Memo 27.
- Бреховских Л.М. О распространении звука в подводном звуковом канале // Докл. Акад. наук СССР. 1949. Т. 69. № 2. С. 157–160.
- Бреховских Л.М. Распространение звуковых и инфразвуковых волн в природных волноводах на большие расстояния // Успехи физ. наук. 1960. Т. 70. № 2. С. 351–360.
- Hale F.E. Long Rang Sound Propagation in the Deep Ocean // J. Acoust. Soc. Am. 1961. V. 33. P. 456.
- Urick R.J. Caustic and convergence zones in deep-water sound transmission // J. Acoust. Soc. Am. 1965. V. 38. P. 348.
- Urick R.J., Lund G.R. Coherence of convergence zones sound // J. Acoust. Soc. Am. 1968. V. 43. P. 723.
- Акустика океана. Под ред. Бреховских Л.М. М.: Наука, 1974. 694 с.
- Урик Р.Дж. Основы гидроакустики. Л.: Судостроение, 1978. 448 с.
- Бреховских Л.М., Годин О.А. Акустика неоднородных сред. Том 1. Основы теории отражения и распространения звука. М.: Наука, 2007. 443 с.
- Бреховских Л.М., Годин О.А. Акустика неоднородных сред. Том 2. Звуковые поля в слоистых и трехмернонеоднородных средах. М.: Наука, 2009.
- Cазонтов П.Г., Малеханов А.И. Согласованная пространственная обработка сигналов в подводных звуковых каналах. Обзор // Акуст. журн. 2015. Т. 61. № 2. С. 233–253.
- Вировлянский А.Л., Казанова А.Ю. Устойчивые компоненты звукового поля на апертуре антенны в условиях многолучевого распространения // Акуст. журн. 2022. Т. 68. № 2. С. 190–203.
- Гидроакустические расчеты для станции шумопеленгования. Свидетельство о государственной регистрации № 2021617661 от 26.04.2021г.
- Cron B.F., Sherman C.H. Spatial-correlation function for various noise models // J. Acoust. Soc. Am. 1962. V. 34. P. 1732.
- Фурдуев А.В. Шумы океана // В кн. Акустика океана. М.: Наука, 1974. С. 615–691.
- Лободин И.Е., Машошин А.И. О возможности обнаружения современных подводных лодок в дальних зонах акустической освещенности // Морская радиоэлектроника. 2019. № 3 (69). С. 44–47.
- Машошин А.И. Особенности синтеза алгоритмов классификации подводных объектов по их гидроакустическому полю // Акуст. журн. 1996. Т. 42. № 3. С. 396–400.
- Галкин О.П. О структуре звукового поля в глубоком океане // В кн. Акустика океана. Современное состояние. М.: Наука, 1982. 99 с.
- Микушин И.И., Серавин Г.Н. Методы и средства измерения скорости звука в море. СПб.: Судостроение, 2012. 224 с.
Supplementary files
