Study of Quality of Thermodiffusion Welding of Crystals in Disk Optical Element by Optoacoustic Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The possibility of evaluating the quality of thermodiffusion welding of two yttrium aluminum garnet crystals in a composite optical disk has been investigated using an optoacoustic method. To obtain acoustic images of thermodiffusion welding. an optoacoustic sensor connected to a pulsed laser (wavelength 532 nm. pulse duration 10 ns) by an optical fiber was scanned over the disk surface. The ultrasonic pulses in the frequency range up to 80 MHz were registered synchronously with the movement of the transducer on the area of 16x16 mm with a step of 0.1 mm. Two modes of ultrasonic location were used: on reflection and on lumen. Diagnostics of two 15 mm diameter composite disks with different quality of thermodiffusion welding was carried out. The possibility of quantifying the quality of the diffusion layer by an optoacoustic method for objective comparison of the disks is discussed. The obtained data are confirmed by the results of measurements by the optical projection method.

Full Text

Restricted Access

About the authors

V. V. Kazakov

Applied Physics Institute, Russian Academy of Sciences

Author for correspondence.
Email: kazak@ipfran.ru
Russian Federation, Nizhny Novgorod

I. B. Mukhin

Applied Physics Institute, Russian Academy of Sciences

Email: kazak@ipfran.ru
Russian Federation, Nizhny Novgorod

A. A. Kurnikov

Applied Physics Institute, Russian Academy of Sciences

Email: kazak@ipfran.ru
Russian Federation, Nizhny Novgorod

P. V. Subochev

Applied Physics Institute, Russian Academy of Sciences

Email: kazak@ipfran.ru
Russian Federation, Nizhny Novgorod

References

  1. Егерев С.В., Симановский Я.О. Оптоакустика неоднородных биомедицинских сред: конкуренция механизмов и перспективы применения (обзор) // Акуст. журн. 2022. Т. 68. № 1. С. 96–116. http://doi.org/10.31857/S0320791922010026
  2. Подымова Н.Б., Карабутов А.А. Влияние трещиноватости полевых шпатов на спектральную мощность обратнорассеянных широкополосных импульсов продольных ультразвуковых волн // Акуст. журн. 2022. Т. 68. № 6. С. 679–688. http://doi.org/10.31857/S0320791922060090
  3. Hayashi T., Mori N., Ueno T. Non-contact imaging of subsurface defects using a scanning laser source // Ultrasonics. 2022. V. 119. P. 106560. https://doi.org/10.1016/j.ultras.2021.106560
  4. Podymova N.B., Karabutov A.A. Nondestructive assessment of local microcracking degree in orthoclase and plagioclase feldspars using spectral analysis of backscattered laser-induced ultrasonic pulses // Ultrasonics. 2022. V. 125. P. 106796. https://doi.org/10.1016/j.ultras.2022.106796
  5. Kou X., Pei C., Chen Z. Fully noncontact inspection of closed surface crack with nonlinear laser ultrasonic testing method // Ultrasonics. 2021. V. 114. P. 106426. https://doi.org/10.1016/j.ultras.2021.106426
  6. Соколовская Ю.Г., Подымова Н.Б., Карабутов А.А. Лазерный оптико-акустический метод для обнаружения нарушений периодичности структуры углепластиков // Акуст. журн. 2022. Т. 68. № 4. С. 454–461. http://doi.org/10.31857/S0320791922040128
  7. Khokhlova T.D., Pelivanov I.M., Solomatin V.S., Karabutov A.A., Sapozhnikov O.A. Opto-acoustic diagnostics of the thermal action of high-intensity focused ultrasound on biological tissues: the possibility of its applications and model experiments // Quant. Electronics. 2006. V. 36. № 12. P. 1097–1102. http://doi.org/10.1070/QE2006v036n12ABEH013262
  8. Bychkov A., Simonova V., Zarubin V., Cherepetskaya E., Karabutov A. The progress in photoacoustic and laser ultrasonic tomographic imaging for biomedicine and industry: A review // Appl. Sciences. 2018. V. 8. P. 1931. http://doi.org/10.3390/app8101931
  9. Yddal T., Gilja O.H., Cochran S., Postema M., Kotopoulis S. Glass-windowed ultrasound transducers // Ultrasonics. 2016. V. 68. P. 108–119. http://dx.doi.org/10.1016/j.ultras.2016.02.005
  10. Kurnikov A.A., Pavlova K.G., Orlova A.G., Khilov A.V., Perekatova V.V., Kovalchuk A.V., Subochev P.V. Broadband (100 kHz – 100 MHz) ultrasound PVDF detectors for raster-scan optoacoustic angiography with acoustic resolution // Quant. Electronics. 2021. V. 51. № 5. P. 383–388. https://doi.org/10.1070/QEL17538
  11. Ren D., Sun Y., Shi J., Chen R. A review of transparent sensors for photoacoustic imaging applications // Photonics. 2021. V. 8. P. 324. https://doi.org/10.3390/photonics8080324
  12. Тиманин Е.М., Михайлова И.С., Фикс И.И., Курников А.А., Ковальчук А.В., Орлова А.Г., Угарова О.А., Frenz M., Jaeger M., Субочев П.В. Улучшение оптоакустических изображений биотканей методом одномерной обратной свертки с адаптивной самокалибровкой в реальном времени // Акуст. журн. 2023. Т. 69. № 6. С. 800–807. http://doi.org/10.31857/S0320791923600750
  13. Рудницкий А.Г. Итерационная схема коррекции изображений в оптоакустической томографии // Акуст. журн. 2022. Т. 68. № 4. С. 440–448. http://doi.org/10.31857/S0320791922040098
  14. Tian C., Xie Z., Fabiilli M.L., Liu S., Wang C., Cheng Q., Wang X. Dual-pulse nonlinear photoacoustic technique: A practical investigation // Biomed. Opt. Expr. 2015. V. 6. № 8. P. 2923–2933. http://doi.org/10.1364/BOE.6.002923
  15. Oraevsky A., Karabutov A. Ultimate sensitivity of time-resolved opto-acoustic detection // Proc. SPIE Biom. Optoacoustics. 2000. V. 3916. P. 228–239. http://doi.org/10.1117/12.386326
  16. Davies S.J., Edward C., Taylor G.S., Palmer S.B. Laser-generated ultrasound: its properties. mechanisms and multifarious applications // J. Phys. D: Appl. Phys. 1993. V. 26. P. 329–348. http://doi.org/10.1088/0022-3727/26/3/001
  17. Ruello P., Gusev V.E. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action // Ultrasonics. 2015. V. 56. P. 21–35. http://dx.doi.org/10.1016/j.ultras.2014.06.004
  18. Gao T., Liu X., Zhu J., Zhao B., Qing X. Multi-frequency localized wave energy for delamination identification using laser ultrasonic guided wave // Ultrasonics. 2021. V. 116. P. 106486. https://doi.org/10.1016/j.ultras.2021.106486
  19. Gupta S., Rajagopal P. S0 Lamb mode scattering studies in laminated composite plate structures with surface breaking cracks: insights into crack opening behavior // Ultrasonics. 2023. V. 129. P. 106901. https://doi.org/10.1016/j.ultras.2022.106901
  20. Karabutov A., Devichensky A., Ivochkin A., Lyamshev M., Pelivanov I., Rohadgi U., Solomatin V., Subudhi M. Laser ultrasonic diagnostics of residual stress // Ultrasonics. 2008. V. 48. P. 631–635. http://doi.org/10.1016/j.ultras.2008.07.006
  21. Goncalves-Novo T., Albach D., Vincent B., Arzakantsyan M., Chanteloup J.-Ch. 14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain // Opt. Express 2013. V. 21. № 1. P. 855–866. http://doi.org/10.1364/OE.21.000855
  22. Vadimova O.L., Mukhin I.B., Kuznetsov I.I., Palashov O.V., Perevezentsev E.A., Khazanov E.A. Calculation of the gain coefficient in cryogenically cooled Yb: YAG disks at high heat generation rates // Quant. Electron. 2013. V. 43. № 3. P. 201–206. http://doi.org/10.1070/QE2013v043n03ABEH015064
  23. Mukhin I.B., Perevezentsev E.A., Palashov O.V. Fabrication of composite laser elements by a new thermal diffusion bonding method // Opt. Mater. Expr. 2014. V. 4. № 2. P. 266–271. http://doi.org/10.1364/OME.4.000266
  24. Kuznetsov I.I., Volkov M.R., Mukhin I.B. Composite Yb:YAG sapphire thin-disk active elements produced by thermal diffusion bonding // J. Opt. Soc. Am. B: Opt. Phys. 2020. V. 37. № 7. P. 2193–2198. http://doi.org/10.1364/josab.396572
  25. Горальник А.С., Кульбицкая М.Н., Михайлов И.Г., Ферштат Л.Н., Шутилов В.А. О температурной зависимости скорости звука в чистых и легированных кварцевых стеклах // Акуст. журн. 1972. Т. 18. № 3. С. 391–396.
  26. Мункуева С.Б., Санжиев Ч.П., Сандитов Д.С. Параметр Грюнайзена и отношение скоростей распространения продольной и поперечной акустических волн в стеклах // Вестн. Бурят. гос. универ. 2011. Т. 11. С. 164–168.
  27. Kobayashi K., Yoshida S., Saijo Y., Hozumi N. Acoustic impedance microscopy for biological tissue characterization // Ultrasonics. 2014. V. 54. P. 1922–1928. http://dx.doi.org/10.1016/j.ultras.2014.04.007
  28. Соколовская Ю.Г., Подымова Н.Б., Карабутов А.А. Лазерный оптико-акустический метод количественной оценки пористости углепластиков на основе измерения их акустического импеданса // Акуст. журн. 2020. Т. 66. № 1. С. 86–94. http://doi.org/10.31857/S0320791920010098
  29. Gonzalez M.G., Riobу L.M., Brazzano L.C., Veiras F.E., Sorichetti P.A., Santiago G.D. Generation of sub-microsecond quasi-unipolar pressure pulses // Ultrasonics. 2019. V. 98. P. 15–19. https://doi.org/10.1016/j.ultras.2019.05.002

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) – The studied disks and (b) – functional diagram of the measurements.

Download (233KB)
3. Fig. 2. Change in the amplitude of the ultrasonic wave signal reflected from the diffusion layer during reflection location: (a, b) – for a defect-free disk and (c, d) – for a disk with defects.

Download (641KB)
4. Fig. 3. Change in the amplitude of the ultrasonic wave signal reflected from the diffusion layer during transmission location: (a, b) – for a defect-free disk and (c, d) – for a disk with defects.

Download (760KB)
5. Fig. 4. Oscillograms of signals for defect-free (1) and defective (2) areas of the disk in scanning mode (a) – reflection and (b) – transmission.

Download (156KB)
6. Fig. 5. Change in average (1), maximum (2) and minimum (3) values ​​of the signal averaged for each value of the cross-section N: (a) – for a defect-free disk and (b) – a defective one when located in the transmission mode.

Download (152KB)

Copyright (c) 2024 The Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».