On the possibility of three-dimensional localization of the airframe noise sources using sequential non-synchronous microphone array measurements
- Authors: Bychkov O.P.1, Demyanov M.A.1
-
Affiliations:
- Central Aerohydrodynamic Institute, Moscow Research Branch, Moscow, Russia
- Issue: Vol 71, No 3 (2025)
- Pages: 416-429
- Section: АТМОСФЕРНАЯ И АЭРОАКУСТИКА
- URL: https://journal-vniispk.ru/0320-7919/article/view/306587
- DOI: https://doi.org/10.31857/S0320791925030099
- EDN: https://elibrary.ru/jufinb
- ID: 306587
Cite item
Abstract
The paper presents the result of using a previously developed method for three-dimensional localization of acoustic sources based on data from non-synchronous measurements with a multi-microphone array from various positions, adapted for dipole-type sources characteristic of airframe noise. The work consists of two parts. In the first, the developed method was verified using the example of localization of test dipole sources. Sources with different orientations of the dipole moment relative to the edges of the microphone array are considered. Based on the results of localization of test sources, it is shown that a dihedral array, the faces of which are parallel to the dipole moment of the source, allows for more accurate identification of a dipole source in three-dimensional space compared to the general case. In the second part of the work, the method is used to construct three-dimensional noise sources localization maps of a small-scale high-lift wing model with an imitation of extended landing gear, which has a complex structure of dipole sources of various amplitudes and directions. An analysis of the obtained volumetric localization maps in various frequency bands was carried out by comparing such localization with test cases and the possibility of localizing sources under study was shown.
About the authors
O. P. Bychkov
Central Aerohydrodynamic Institute, Moscow Research Branch, Moscow, Russia
Email: oleg.bychkov@tsagi.ru
M. A. Demyanov
Central Aerohydrodynamic Institute, Moscow Research Branch, Moscow, Russia
Author for correspondence.
Email: oleg.bychkov@tsagi.ru
References
- Michel U. History of acoustic beamforming // 1st Berlin Beamforming Conference. 2006.
- Christensen J.J., Hald J. Beamforming — technical review no.1. Brüel & Kjaer, Technical Review 1–2004, 2004.
- Johnson D.H., Dudgeon D.E. Array Signal Processing, Concepts and Techniques, P T R Prentice Hall, Englewood Cliffs, 1993.
- Dolph C.L. A current distribution of broadside arrays which optimizes the relationship between beam width and sidelobe level // Inst. Radio Eng. 1946. Т. 34. С. 335–348.
- Бардышев В.И. Горизонтальная приемная случайная антенная решетка, согласованная с гидроакустическим волноводом // Акуст. журн. 2012. Т. 58. № 5. С. 610–613.
- Yardibi T., Bahr C., Zawodny N.S., Liu F., Cattafesta III L.N., and Lik J. Uncertainty Analysis of the Standard Delay-and-Sum Beamformer and Array Calibration // AIAA 2009-3120.
- Глебова Г.М., Аверьянов А.В., Кузнецов Г.Н. Экспериментальное исследование характеристик направленности векторно-скалярной антенны // Акуст. журн. 2011. Т. 57. № 5. С. 681–694.
- Клячкин В.И. Статистический анализ векторно-фазовых характеристик акустических полей и алгоритмы их регистрации // Акуст. журн. 2004. Т. 50. № 4. С. 516–523.
- Белова Н.И., Кузнецов Г.Н. Сравнение однонаправленного приема сигналов в волноводе с использованием линейных векторно-скалярных и комбинированных антенн // Акуст. журн. 2013. Т. 59. № 2. С. 255–267.
- Белова Н.И., Кузнецов Г.Н., Степанов А.Н. Экспериментальное исследование интерференционной и фазовой структуры потока мощности от локальных источников в мелком море // Акуст. журн. 2016. Т. 62. № 3. С. 318–329.
- Михайлов С.Г. Пеленгование векторно-скалярным приемником в поле анизотропной помехи // Акуст. журн. 2020. Т. 66. № 2. С. 170–180.
- Yang Y., Chu Z., Shen L., Xu Z. Functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays // J. Sound Vib. 2016. V. 373. P. 340–359.
- Sarradj E. Three-dimensional acoustic source mapping with different beamforming steering vector formulations // Advances in Acoustics and Vibration. 2012. 292695.
- Yu L., Guo Q., Chu N., Wang R. Achieving 3D Beamforming by Non-Synchronous Microphone Array Measurements // Sensors. 2020. V. 20. 7308.
- Porteous R., Prime Z., Doolan C., Moreau D., Valeau V. Three-dimensional beamforming of dipolar aeroacoustic sources // J. Sound Vibr. 2015. V. 355. P. 117–134.
- Бычков О.П., Демьянов М.А. Обобщение стандартного алгоритма “бимформинг” для идентификации акустических источников с помощью несинхронных измерений микрофонной решеткой // Акуст. журн. 2022. Т. 68. № 2. С. 162–172.
- Curle N. The Influence of Solid Boundaries on Aerodynamic Sound // Proc. Roy. Soc. London. Ser. A 231. No. 1187. P. 505.
- Бычков О.П., Демьянов М.А., Фараносов Г.А. Локализация дипольных источников шума плоскими микрофонными решетками // Акуст. журн. 2019. Т. 65. № 5. С. 675–687.
Supplementary files
