Vibrational black hole for torsional waves propagating through a rod of variable cross-section
- Authors: Mironov M.A.1
-
Affiliations:
- Andreev Acoustics Institute
- Issue: Vol 71, No 2 (2025)
- Pages: 176-183
- Section: КЛАССИЧЕСКИЕ ПРОБЛЕМЫ ЛИНЕЙНОЙ АКУСТИКИ И ТЕОРИИ ВОЛН
- URL: https://journal-vniispk.ru/0320-7919/article/view/306615
- DOI: https://doi.org/10.31857/S0320791925020027
- EDN: https://elibrary.ru/iifhcf
- ID: 306615
Cite item
Abstract
About the authors
M. A. Mironov
Andreev Acoustics Institute
Email: mironov_ma@mail.ru
4 Shvernik str., Moscow, Russia, 117292
References
- Миронов М.А. Распространение изгибной волны в пластине, толщина которой плавно уменьшается до нуля на конечном интервале // Акуст. журн. 1988. Т. 34. № 3. С. 546–547.
- Pelat A., Gautier F., Conlon S.C., Semperlotti F.The acoustic black hole: A review of theory and applications // J. Sound Vibr. 2020. V. 476.115316 https://doi.org/10.1016/j.jsv.2020.115316
- Pisliakov V., Mironov M., Svadkovsky A.Vibration of specially tapered beams and plates // Internoise–2000. Nice. France. Proceedings 4-2657.
- Krylov V.V.Propagation of plate bending waves in the vicinity of one- and two-dimensional acoustic ‘black holes’ // Proc. of the ECCOMAS Int. Conf. on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2007). Rethymno, Crete, Greece, 13-16 June 2007 (CD-ROM).
- Bowyer E.P., O’Boy D.J., Krylov V.V., Gautier F.Experimental investigation of damping flexural vibrations using two-dimensional acoustic ‘black holes’ // Proc. of the Int. Conf. on Noise and Vibration Engineering (ISMA 2010). Leuven, Belgium, 20–22 September 2010. Ed. Sas P., Bergen B. 2010. P. 1181–1192.
- Zhou T., Tang L., Ji H., Qiu J., and Cheng L.Dynamic and static properties of double-layered compound acoustic black hole structures // Int. J. Applied Mechanics. 2017. V. 9(5). 1750074.
- Lee J.Y., Jeon W.Vibration damping using a spiral acoustic black hole // J. Acoust. Soc. Am. 2017. V. 141. № 5. P. 1437–1445.
- Wan Z., Zhu X., Li T., Nie R.Low-frequency multimode vibration suppression of an acoustic black hole beam by shunt damping // J. Vib. Acoust. 2022. 144. 2. 021012. https://doi.org/10.1115/1.4053590
- Hook K., Daley S., Cheer J.Active control of an acoustic black hole using a feedback strategy // J. Sound Vibr. 2022. 528. 116895. https://doi.org/10.1016/j.jsv.2022.116895
- Миронов М.А.Разрезной стержень как вибрационная черная дыра // Акуст. журн. 2019. Т. 65. № 6. С. 736–739.
- Deng J., Guasch O., Maxit L., Gao N. A metamaterial consisting of an acoustic black hole plate with local resonators for broadband vibration reduction // J. Sound Vibr. 2022. V. 526. 16803. https://doi.org/10.1016/j.jsv.2022.116803
- Raybaud G., Lee J. Y., Jeon W., Pelat A., Gautier F. On the control of the absorption of an Acoustic Black Hole by using attached point supports // J. Sound Vibr. 2023. V. 548. № 3. 117562. https://doi.org/10.1016/j.jsv.2023.117562
- Zheng E., He S., Tang R., and He S.Damping Enhancement Using Axially Functionally Graded Porous Structure Based on Acoustic Black Hole Effect // Materials 2019. V. 12. P. 2480. https://doi.org/10.3390/ma12152480
- Austin B., Cheer J., Bastola A. Design of a multi-material acoustic black hole. Inter Noise 2022. Glasgow, UK. August 2022.
- Tong Zhou, Li Cheng. Planar Swirl-shaped Acoustic Black Hole Absorbers for Multi-directional Vibration Suppression // J. Sound Vibr. 2022. V. 516(3). 116500. https://doi.org/10.1016/j.jsv.2021.116500
- Kim S.-Y., Lee D.Numerical simulation of characteristics of wave propagation and reflection coefficient in a helix-acoustic black hole // J. Vibr. Control. 2020. V. 28. № 5–6. https://doi.org/10.1177/1077546320980570
- Kim S.-Y., Lee D. Experimental investigation of a modular helix-acoustic black hole //Applied Acoustics2023.V. 214. 109661. https://doi.org/10.1016/j.apacoust.2023.109661
- Sørensen K.S., Cornean H.D., and Sorokin S.Optimal profile design for acoustic black holes using Timoshenko beam theory // J. Acoust. Soc. Am. 2023. V. 153. № 3. P. 1554–1563. https://doi.org/10.1121/10.0017322
- Стретт Дж. В.(Рэлей). Теория звука. М.: Гостехиздат, 1955. Т. 1. Гл. 7, раздел 148в. С. 251–253. 476 с.
- Ландау Л.Д., Лившиц Е.М.Теория упругости. М.: Физматлит, 2001. 259 с.
- Миронов М.А.Точные решения уравнения поперечных колебаний стержня со специальным законом изменения поперечного сечения // Акуст. журн. 2017. Т. 63. № 1. С. 3–8.
Supplementary files
