Vibrational black hole for torsional waves propagating through a rod of variable cross-section

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The propagation of torsional waves through rods of variable cross-section is considered. With a linear increase in the flattening of the rod, the propagation velocity of the torsional wave decreases linearly and turns to zero at the end of the rod. Yet, the propagation time to the sharpened end is equal to infinity. Such a decelerating structure is called a vibrational black hole in modern terminology. Exact solutions of the equation of torsional vibrations of a sharpened rod with a moment of inertia and a moment of torsion in the form of power functions are given. Corresponding expressions for the input impedance at the initial cross-section are obtained.

About the authors

M. A. Mironov

Andreev Acoustics Institute

Email: mironov_ma@mail.ru
4 Shvernik str., Moscow, Russia, 117292

References

  1. Миронов М.А. Распространение изгибной волны в пластине, толщина которой плавно уменьшается до нуля на конечном интервале // Акуст. журн. 1988. Т. 34. № 3. С. 546–547.
  2. Pelat A., Gautier F., Conlon S.C., Semperlotti F.The acoustic black hole: A review of theory and applications // J. Sound Vibr. 2020. V. 476.115316 https://doi.org/10.1016/j.jsv.2020.115316
  3. Pisliakov V., Mironov M., Svadkovsky A.Vibration of specially tapered beams and plates // Internoise–2000. Nice. France. Proceedings 4-2657.
  4. Krylov V.V.Propagation of plate bending waves in the vicinity of one- and two-dimensional acoustic ‘black holes’ // Proc. of the ECCOMAS Int. Conf. on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2007). Rethymno, Crete, Greece, 13-16 June 2007 (CD-ROM).
  5. Bowyer E.P., O’Boy D.J., Krylov V.V., Gautier F.Experimental investigation of damping flexural vibrations using two-dimensional acoustic ‘black holes’ // Proc. of the Int. Conf. on Noise and Vibration Engineering (ISMA 2010). Leuven, Belgium, 20–22 September 2010. Ed. Sas P., Bergen B. 2010. P. 1181–1192.
  6. Zhou T., Tang L., Ji H., Qiu J., and Cheng L.Dynamic and static properties of double-layered compound acoustic black hole structures // Int. J. Applied Mechanics. 2017. V. 9(5). 1750074.
  7. Lee J.Y., Jeon W.Vibration damping using a spiral acoustic black hole // J. Acoust. Soc. Am. 2017. V. 141. № 5. P. 1437–1445.
  8. Wan Z., Zhu X., Li T., Nie R.Low-frequency multimode vibration suppression of an acoustic black hole beam by shunt damping // J. Vib. Acoust. 2022. 144. 2. 021012. https://doi.org/10.1115/1.4053590
  9. Hook K., Daley S., Cheer J.Active control of an acoustic black hole using a feedback strategy // J. Sound Vibr. 2022. 528. 116895. https://doi.org/10.1016/j.jsv.2022.116895
  10. Миронов М.А.Разрезной стержень как вибрационная черная дыра // Акуст. журн. 2019. Т. 65. № 6. С. 736–739.
  11. Deng J., Guasch O., Maxit L., Gao N. A metamaterial consisting of an acoustic black hole plate with local resonators for broadband vibration reduction // J. Sound Vibr. 2022. V. 526. 16803. https://doi.org/10.1016/j.jsv.2022.116803
  12. Raybaud G., Lee J. Y., Jeon W., Pelat A., Gautier F. On the control of the absorption of an Acoustic Black Hole by using attached point supports // J. Sound Vibr. 2023. V. 548. № 3. 117562. https://doi.org/10.1016/j.jsv.2023.117562
  13. Zheng E., He S., Tang R., and He S.Damping Enhancement Using Axially Functionally Graded Porous Structure Based on Acoustic Black Hole Effect // Materials 2019. V. 12. P. 2480. https://doi.org/10.3390/ma12152480
  14. Austin B., Cheer J., Bastola A. Design of a multi-material acoustic black hole. Inter Noise 2022. Glasgow, UK. August 2022.
  15. Tong Zhou, Li Cheng. Planar Swirl-shaped Acoustic Black Hole Absorbers for Multi-directional Vibration Suppression // J. Sound Vibr. 2022. V. 516(3). 116500. https://doi.org/10.1016/j.jsv.2021.116500
  16. Kim S.-Y., Lee D.Numerical simulation of characteristics of wave propagation and reflection coefficient in a helix-acoustic black hole // J. Vibr. Control. 2020. V. 28. № 5–6. https://doi.org/10.1177/1077546320980570
  17. Kim S.-Y., Lee D. Experimental investigation of a modular helix-acoustic black hole //Applied Acoustics2023.V. 214. 109661. https://doi.org/10.1016/j.apacoust.2023.109661
  18. Sørensen K.S., Cornean H.D., and Sorokin S.Optimal profile design for acoustic black holes using Timoshenko beam theory // J. Acoust. Soc. Am. 2023. V. 153. № 3. P. 1554–1563. https://doi.org/10.1121/10.0017322
  19. Стретт Дж. В.(Рэлей). Теория звука. М.: Гостехиздат, 1955. Т. 1. Гл. 7, раздел 148в. С. 251–253. 476 с.
  20. Ландау Л.Д., Лившиц Е.М.Теория упругости. М.: Физматлит, 2001. 259 с.
  21. Миронов М.А.Точные решения уравнения поперечных колебаний стержня со специальным законом изменения поперечного сечения // Акуст. журн. 2017. Т. 63. № 1. С. 3–8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».