Numerical simulation of volumetric ultrasound heating of biological tissue with surface cooling
- Authors: Pestova P.A.1, Rybyanets A.N.2, Sapozhnikov O.A.1, Karzova M.M.1, Yuldashev P.V.1, Tsysar S.A.1, Kotelnikova L.M.1, Shvetsov I.A.2, Khokhlova V.A.1
-
Affiliations:
- Moscow State University
- Research Institute of Physics
- Issue: Vol 71, No 2 (2025)
- Pages: 206-217
- Section: НЕЛИНЕЙНАЯ АКУСТИКА
- URL: https://journal-vniispk.ru/0320-7919/article/view/306618
- DOI: https://doi.org/10.31857/S0320791925020055
- EDN: https://elibrary.ru/iiodpq
- ID: 306618
Cite item
Abstract
About the authors
P. A. Pestova
Moscow State University
Email: pestova.pa16@physics.msu.ru
Moscow, Russia, 119991
A. N. Rybyanets
Research Institute of PhysicsRostov on Don, Russia, 344090
O. A. Sapozhnikov
Moscow State UniversityMoscow, Russia, 119991
M. M. Karzova
Moscow State UniversityMoscow, Russia, 119991
P. V. Yuldashev
Moscow State UniversityMoscow, Russia, 119991
S. A. Tsysar
Moscow State UniversityMoscow, Russia, 119991
L. M. Kotelnikova
Moscow State UniversityMoscow, Russia, 119991
I. A. Shvetsov
Research Institute of PhysicsRostov on Don, Russia, 344090
V. A. Khokhlova
Moscow State UniversityMoscow, Russia, 119991
References
- Еняков А.М.Метрологические проблемы применения ультразвука в физиотерапии // АСМ. 2015. Т. 3. №4. С. 152–193.
- Mougenot C., Köhler M.O., Enholm J., Quesson B., Moonen C.Quantification of near-field heating during volumetric MR-HIFU ablation // Med. Phys. 2011. V. 38. P. 272–282.
- Crouzet S., Chapelon J.Y., Rouviere O., Mege-Lechevallier F., Colombel M., Tonoli-Catez H., Martin X., Gelet A.Whole-gland ablation of localized prostate cancer with high-intensity focused ultrasound oncologic outcomes and morbidity in 1002 patients // Eur. Urol. 2014. V. 65. P. 907–914.
- Laubach H.J., Makin I.R., Barthe P.G., Slayton M.H., Manstein D.Intense focused ultrasound: evaluation of a new treatment modality for precise microcoagulation within the skin // Dermatol. Surg. 2008.V. 34. № 5.P. 727–734.
- Бэйли М.Р., Хохлова В.А., Сапожников О.А., Каргл С.Г.,Крам Л.А.Физические механизмы воздействия терапевтического ультразвука на биологическую ткань // Акуст. журн. 2003. Т. 49. № 4. С. 437–464.
- Haar G.Therapeutic applications of ultrasound // Prog. Biophys. Mol. Biol. 2007. V. 93. P. 111–129.
- Ko E.J., Hong J.Y., Kwon T.R., Choi E.J., Jang Y.J., Choi S.Y., Yoo K.H., Kim S.Y., Kim B.J.Efficacy and safety of non-invasive body tightening with high-intensity focused ultrasound (HIFU) // Skin Res. Technol. 2017. V. 23. № 4. P. 558–562.
- Al-Jumaily A.M., Liaquat H., Paul S.Focused ultrasound for dermal applications // Ultrasound Med. Biol. 2024. V. 50. № 1. P. 8–17.
- Day D.Microfocused ultrasound for facial rejuvenation: current perspectives // Res. rep. focus. ultrasound. 2014. V. 2. P. 13–17.
- Gutowski K.A. Microfocused ultrasound for skin tightening // Clin. Plast. Surg. 2016. V. 43. № 3. P. 577–582.
- Oni G., Hoxworth R., Teotia S., Brown S., Kenkel J.M.Evaluation of a microfocused ultrasound system for improving skin laxity and tightening in the lower face // Aesthet. Surg. J. 2014. V. 34. № 7. P. 1099–1110.
- White W.M., Makin I.R., Barthe P.G., Slayton M.H., Gliklich R.E. Selective creation of thermal injury zones in the superficial musculoaponeurotic system using intense ultrasound therapy: a new target for noninvasive facial rejuvenation // Arch. Facial Plast. Surg. 2007. V. 9. № 1. P. 22–29.
- MacGregor J.L., Tanzi E.L. Microfocused ultrasound for skin tightening // Semin Cutan Med. Surg. 2013. V. 32. № 1. P. 18–25.
- Checcucci E. et al.The real-time intraoperative guidance of the new HIFU Focal-OneNAplatform allows to minimize the perioperative adverse events in salvage setting // J. Ultrasound.2022. V. 25. № 2. P. 225–232.
- Lee H.J., Lee M.H., Lee S.G., Yeo U.C., Chang S.E..Evaluation of a novel device, high-intensity focused ultrasound with a contact cooling for subcutaneous fat reduction // Lasers Surg. Med. 2016. V. 48. № 9. P. 878–886.
- Brown S.A., Greenbaum L., Shtukmaster S., Zadok Y., Ben-Ezra S., Kushkuley L. Characterization of nonthermal focused ultrasound for noninvasive selective fat cell disruption (lysis): technical and preclinical assessment // Plast. Reconstr. Surg. 2009. V. 124. № 1. P. 92–101.
- Hongcharu W., Boonchoo K., Gold M.H.The efficacy and safety of the high-intensity parallel beam ultrasound device at the depth of 1.5 mm for skin tightening //J.Cosmet. Dermatol. 2023.V. 22. № 5.P. 1488–1494.
- Рыбянец А.Н., Швецов И.А., Швецова Н.А., Цысарь С.А., Котельникова Л.М., Хохлова В.А., Сапожников О.А.Cочетание объемного ультразвукового нагрева с поверхностным охлаждением как новый метод пространственной и временной локализации теплового воздействия на биоткани // Сборник Трудов XXXVI сессии Российского акустического общества. М.:ГЕОС, 2024.С. 1180–1186.
- Rybyanets A.N., Shvetsov I.A., Shvetsova N.A., Marakhovsky M.A., Kolpacheva N.A. Microstructure, complex electromechanical parameters and dispersion characteristics of ferroelectrically “hard” piezoceramics // J. Adv. Dielectrics. 2025. V. 15. № 3. P. 2540001.
- Sapozhnikov O.A., Tsysar S.A., Khokhlova V.A., Kreider W. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields // J. Acoust. Soc. Am.2015. V. 138. № 3. P. 1515–1532.
- Nikolaev D.A., Tsysar S.A., Khokhlova V.A., Kreider W., Sapozhnikov O.A.Holographic extraction of plane waves from an ultrasound beam for acoustic characterization of an absorbing layer of finite dimensions // J. Acoust. Soc. Am. 2021. V. 149. № 1. P. 386.
- Wong G.S., Zhu S.Speed of sound in seawater as a function of salinity, temperature, and pressure // J. Acoust. Soc. Am. 1995. V. 97. № 3. P. 1732–1736.
- Keravnou C.P., Izamis M.-L., Averkiou M.A.Method for estimating the acoustic pressure in tissues using low-amplitude measurements in water // Ultrasound Med. Biol. 2015.V. 41. № 11.P. 3001–3012.
- Андрияхина Ю.С., Карзова М.М., Юлдашев П.В., Хохлова В.А.Ускорение тепловой абляции объемов биологической ткани с использованием фокусированных ультразвуковых пучков с ударными фронтами // Акуст. журн.2019.Т. 65. № 2.С. 1—12.
- Duck F.A.Physical properties of tissue. London: Academic Press, 1990. https://itis.swiss/virtual-population/tissue-properties/database/acoustic-properties/
- Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 736 с.
- Пестова П.А., Карзова М. М., Юлдашев П. В., Крайдер У., Хохлова В.А.Влияние траектории перемещения фокуса на равномерность температурного поля при импульсном воздействии мощного ультразвукового пучка на биологическую ткань // Акуст. журн.2021.Т. 57. № 3.С. 250–259.
- Sapareto S.A., Dewey W.C.Thermal dose determination in cancer therapy // Int. J. Radiat. Oncol. Biol. Phys. 1984. V. 10. № 6. P. 787–800.
- ХиллК.Р.,БэмберДж.Ультразвук в медицине. Физические основы применения. Под ред. тер Хаар Г. Пер. с англ. М.: Физматлит, 2008.
- Fan X., Hynynen K. Ultrasound surgery using multiple sonications — treatment time considerations // Ultrasound Med. Biol. 1996. V. 22. № 4. P. 471–482.
- Venkatesan A.M., Partanen A., Pulanic T.K., Dreher M.R., Fischer J., Zurawin R.K., Muthupillai R., Sokka S., Nieminen H.J., Sinaii N., Merino M., Wood B.J., Stratton P. Magnetic resonance imaging-guided volumetric ablation of symptomatic leiomyomata: correlation of imaging with histology // J. Vasc. Interv. Radiol. 2012. V. 23. № 6. P. 786–794.
- Крамаренко Н.В. Обзор способов вывода критериев подобия в механике // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. Науки. 2021. T. 25. №1. С. 163–192.
Supplementary files
