RESULTS OF A SURVEY OF THE ACOUSTIC CONDITIONS IN THE NORTHERN GULF OF OB

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Results of an acoustic monitoring conducted in the northern part of the shallow-water Gulf of Ob (the Ob River estuary, an embayment in the Kara Sea) are presented. Vessel-generated noises and communication signals from marine mammals are identified among acoustic sources. Sounds produced by beluga whales are subjected to quantitative analysis using a convolutional neural network. A model for inhomogeneous geoacoustic waveguide characteristic of this area is inferred from the data of a dedicated survey with deployment of an air gun as a low-frequency pulse source. The conclusion is drawn about the high level of attenuation of low-frequency sound during propagation. Based on the numerical simulation, the measurement results are extrapolated to other sites of the study area that potentially have sources of anthropogenic noise.

About the authors

D. S Manulchev

V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: manulchevds@gmail.com
Vladivostok, Russia

D. G Kovzel

V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: dgk06@mail.ru
Vladivostok, Russia

S. V Dudov

Lomonosov Moscow State University; Institute of Environmental Survey, Planning Assessment, JSC

Faculty of Biology Moscow, Russia; Moscow, Russia

V. A Gritsenko

V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Vladivostok, Russia

References

  1. Halliday W.D. et al. Potential exposure of beluga and bowhead whales to underwater noise from ship traffic in the Beaufort and Chukchi Seas // Ocean & Coastal Management. 2021. V. 204. P. 105473.
  2. Gomez C., Lawson J., Wright A.J., Buren A., Tollit D., Lesage V. A systematic review on the behavioural responses of wild marine mammals to noise: the disparity between science and policy // Can. J. Zool. 2016. V. 94. P. 801–819.
  3. Popper A.N., Hastings M.C. The effects of anthropogenic sources of sound on fishes // J. Fish. Biol. 2009. V. 75. P. 455–489.
  4. McCauley R.D., Day R.D., Swadling K.M., Fitzgibbon Q.P., Watson R.A., Semmens J.M. Widely used marine seismic survey air gun operations negatively impact zooplankton // Nature ecology & evolution. 2017. V. 1. № 7. P. 0195.
  5. Рутенко А.Н., Борисов С.В., Ковзель Д.Г., Гриценко В.А. Радиогидроакустическая станция для мониторинга параметров антропогенных импульсных и шумовых сигналов на шельфе // Акуст. журн. 2015. Т. 61. № 4. С. 500–511.
  6. Ковзель Д.Г. Аппаратура акустической связи для контроля работы автономной гидроакустической донной станции на шельфе // Акуст. журн. 2019. Т. 65. № 5. С. 619–629.
  7. Ковзель Д.Г. Технические средства гидроакустического мониторинга сейсморазведочных работ на шельфе // Акуст. журн. 2018. Т. 64. № 5. С. 605–617.
  8. Экологический генератор отпугивающих звуков. Пат. RU 2447658 C2. Российская федерация / Гореликов А.И. – 2010126403/13; заявлено 28.06.2010; опубликовано 20.04.2012.
  9. Трофимов М.Ю. Узкоугольные параболические уравнения адиабатического распространения звука одной моды в горизонтально-неоднородном мелком море // Акуст. журн. 1999. Т. 45. № 5. С. 647–652.
  10. Petrov P.S., Trofimov M.Yu., Zakharenko A.D. Mode parabolic equations for the modeling of three-dimensional sound propagation effects in shallow water // Proc. of the 11th European Conf. on Underwater Acoustics. 2–6 th July 2012, GB Edinburgh. P. 53–60.
  11. Рутенко А.Н., Гаврилевский А.В., Путов В.Ф., Соловьев А.А., Манульчев Д.С. Мониторинг антропогенных шумов на шельфе о. Сахалин во время сейсморазведочных исследований // Акуст. журн. 2016. Т. 62. № 3. С. 348–362.
  12. Rutenko A.N. et al. Acoustic monitoring and analyses of air gun, pile driving, vessel, and ambient sounds during the 2015 seismic surveys on the Sakhalin shelf // Environmental Monitoring and Assessment. 2022. V. 194 (1). P. 1–19.
  13. Sousa-Lima R.S. et al. A review and inventory of fixed autonomous recorders for passive acoustic monitoring of marine mammals // Aquatic Mammals. 2013. V. 39. № 1. P. 23–53.
  14. Болтунов А.Н., Алексеева Я.И., Беликов С.Е., Краснова В.В., Семенова В.С., Светочев В.Н., Светочева О.Н., Чернецкий А.Д. Морские млекопитающие и белый медведь Карского моря: обзор современного состояния. Под ред. Бельковича В.М. М.: “Печатный центр Декарт”, 2015. C. 104.
  15. Erbe C., King A.R. Automatic detection of marine mammals using information entropy // J. Acoust. Soc. Am. 2008. V. 124. № 5. P. 2833–2840.
  16. Booth C.G. et al. Assessing the viability of density estimation for cetaceans from passive acoustic fixed sensors throughout the life cycle of an Offshore E&P Field Development // SMRU Consulting. 2017.
  17. Belkovich V.M. Stability and variability of acoustic signals of the White Sea beluga whale / In Physical, geological and biological studies of oceans and seas; 2010.
  18. Lammers M. et al. Passive acoustic monitoring of Cook Inlet beluga whales (Delphinapterus leucas) // J. Acoust. Soc. Am. 2013. V. 134 (3). P. 2497–2504.
  19. Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks // Communications of the ACM. 2017. V. 60. № 6. P. 84–90.
  20. LeCun Y. et al. Gradient-based learning applied to document recognition // Proc. of the IEEE. 1998. V. 86. № 11. P. 2278–2324.
  21. Рутенко А.Н., Манульчев Д.С. Распространение низкочастотных волн через мыс Шульца // Акуст. журн. 2014. Т. 60. № 4. С. 384–394.
  22. Medwin H. Speed of sound in water: a simple equation for realistic parameters // J. Acoust. Soc. Am. 1975. V. 58. № 6. P. 1318–1319.
  23. Götz T. et al. Overview of the impacts of anthropogenic underwater sound in the marine environment // OSPAR Biodiversity Series. 2009. V. 441. P. 1–134.
  24. Nedwell J., Howell D. A review of offshore wind-farm related underwater noise sources // Cowrie Rep. 2004. V. 544. P. 1–57.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).