Description of plates with matrix Klein – Gordon equation

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Matrix Klein–Gordon equation (MKGE) describes waveguides with discrete structure of their cross-section. It can be also considered as a model of a continuous waveguide obtained in the result of application of the waveguide Finite Element Method. In the current work we study applicability of MKGE to flexural vibrations of a thin plate. The question is not trivial since MKGE contains time and coordinate derivatives up to the second order, while the plate’s vibrations are obeyed to an equation with the fourth order coordinate derivative. Here we derive MKGE of different dimensions for the plate. We show that linear approximation of the displacements in the plate across its width leads to an overestimation of the plate’s rigidity, while more complicated models lead to the right values.

About the authors

K. S Kniazeva

Lomonosov Moscow state university

Email: knyazevaks05@gmail.com
Physical Faculty Moscow, Russia

E. L. Shelest

Lomonosov Moscow state university

Physical Faculty Moscow, Russia

A. V. Shanin

Lomonosov Moscow state university

Physical Faculty Moscow, Russia

References

  1. Duhamel D., Mace B.R. and Brennan M.J. Finite element analysis of the vibrations of waveguides and periodic structures // J. Sound Vibr. 2006. V. 294. № 1–2. P. 205–220.
  2. Шанин А.В., Корольков А.И., Князева К.С. Об интегральных представлениях импульсного сигнала в волноводе // Акуст. журн. 2022. Т. 68. № 4. С. 361–372.
  3. Loveday P.W., Long C.S., Ramallo D.A. Mode repulsion of ultrasonic guided waves in rails // Ultrasonics. 2018. V. 84. P. 341–349.
  4. Sabini aux P. and Kropp W. A waveguide finite element aided analysis of the wave field on a stationary tyre, not in contact with the ground // J. Sound Vibr. 2010. V. 329. № 15. P. 3041–3064.
  5. Finnveden S. Evaluation of modal density and group velocity by a finite element method // J. Sound Vibr. 2004. V. 273. № 1–2. P. 51–75.
  6. Zharnikov T.V. and Syresin D.E. Repulsion of dispersion curves of quasidipole modes of anisotropic waveguides studied by finite element method // J. Acoust. Soc. Am. 2015. V. 137. № 6. P. 396–402.
  7. Fujisawa T. and Koshiba M. Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides // J. Lightwave Technology. 2002. V. 20. No 10. P. 1876–1884.
  8. Obayya S.S.A., Rahman B.M.A., El-Mikati H.A. Full-vectoral finite-element beam propagation method for nonlinear directional coupler devices // IEEE J. Quantum Electronics. 2000. V. 36. № 5. P. 556–562.
  9. Adami H.A. Waves in prismatic guides of arbitrary cross section // J. Applied Mechanics. 1973. December. P. 1067–1072.
  10. Зенкевич О., Морган К. Конечные элементы и аппроксимация. М.: Мир, 1986.
  11. Reddy J.N. Theory and analysis of elastic plates and shells. CRC press, 2006.
  12. Павлов В.И., Сухоруков А.И. Переходное излучение акустических волн // Успехи физ. наук. 1985. Т. 147. № 1. P. 83–115.
  13. Lamb H. On waves in an elastic plate // Proc. Royal Soc. London. Series A, Containing papers of a mathematical and physical character. 1917. V. 93. No 648. P. 114–128.
  14. Ландау Л.Д., Лифшиц Е.М. Механика. М.: Наука, 1988.
  15. Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1965.
  16. Mindlin R. Introduction to the mathematical theory of vibrations of elastic plates. World Scientific Publishing, 2006.
  17. Reddy J.N. and Wang C.M. An overview of the relationships between solutions of the classical and shear deformation plate theories // Composites Science and Technology. 2000. V. 60. № 12–13. P. 2327–2335.
  18. Stephen N.G. Mindlin plate theory: best shear coefficient and higher spectra validity // J. Sound Vibr. 1997. V. 202. № 4. P. 539–553.
  19. Dow J.O. and Byrd D.E. The identification and elimination of artificial stiffening errors in finite elements // Int. J. for Numerical Methods in Engineering. 1988. V. 26. № 3. P. 743–762.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).