Seasonal dynamics of planktonic and bottom communities of the Chernavka River (the nature park Eltonsky)
- Authors: Golovatyuk L.V.1,2, Kanapatsky T.A.3, Gusakov V.A.1, Mikhailov R.A.1
-
Affiliations:
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
- Institute of Ecology of the Volga River Basin, Samara Federal Research Scientific Center, Russian Academy of Sciences
- Winogradsky Institute of Microbiology, Federal Research Center of Fundamentals of Biotechnology, Russian Academy of Sciences
- Issue: Vol 18, No 4 (2025)
- Pages: 612-623
- Section: Articles
- URL: https://journal-vniispk.ru/0320-9652/article/view/307052
- DOI: https://doi.org/10.31857/S0320965225040087
- EDN: https://elibrary.ru/kcpyph
- ID: 307052
Cite item
Abstract
The results of studies of the seasonal dynamics of macrozoobenthos, meiobenthos and planktonic communities throughout the polyhaline Chernavka River flowing through the territory of the Nature Park Eltonskiy are presented. Zoobenthos communities in all research seasons are characterized by consistently high abundance, biomass and production, the main contribution to which is made by ostracods Cyprideis torosa, and by halophilic polycyclic chironomids Cricotopus salinophilus and by biting midges Palpomyia schmidti. The average values of the production of macrozoobenthos during the research period of the Chernavka River (1.295 g C dry wt m2 × day) were higher than the average daily production of this group of aquatic organisms in the coastal lagoons of the northern part of the Adriatic Sea, and the production of meiobenthos (0.13 mg C dry wt m2 × day) was an order of magnitude or more higher than that known for freshwater lakes of all trophic types and close to the values characteristic of the tidal zone some seas and estuaries. The large amounts of zoobenthos production are due to the high water temperature from April to October and the high production of the primary trophic link. An increase in production indicators from the middle to the lower reaches of the river has been established, which determines a stable food base for native and migratory waterfowl.
About the authors
L. V. Golovatyuk
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences; Institute of Ecology of the Volga River Basin, Samara Federal Research Scientific Center, Russian Academy of Sciences
Email: gollarisa@mail.ru
Borok, Nekouzsky raion, Yaroslavl Oblast, Russia; Tolyatti, Russia
T. A. Kanapatsky
Winogradsky Institute of Microbiology, Federal Research Center of Fundamentals of Biotechnology, Russian Academy of Sciences
Email: gollarisa@mail.ru
Moscow, Russia
V. A. Gusakov
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
Email: gollarisa@mail.ru
Borok, Nekouzsky raion, Yaroslavl Oblast, Russia
R. A. Mikhailov
Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences
Author for correspondence.
Email: gollarisa@mail.ru
Borok, Nekouzsky raion, Yaroslavl Oblast, Russia
References
- Алимов А.Ф. 1989. Введение в продукционную гидробиологию. Л.: Гидрометеоиздат.
- Ануфриева Е.В., Шадрин Н.В. 2023. Жизнь в экстремальной среде. Животные в экосистемах соленых вод. М.: Тов-во науч. изданий КМК.
- Букварева Е.Н., Алещенко Г.М. 2005. Принцип оптимального разнообразия биосистем // Успехи соврем. биол. Т. 125. Вып. 4. С. 337.
- Воронин М.Ю., Гребенников К.А., Сажнев А.С. и др. 2016. Макрозообентос гипергалинных водоемов Богдинско-Боскунчакского заповедника // Изв. Саратов. ун-та. Нов. сер. Сер. Химия. Биология. Экология. Т. 16. Вып. 2. С. 168.
- Географический атлас Волгоградской области. 2014. 2-е изд. М.: “Планета”.
- Головатюк Л.В., Зинченко Т.Д. 2015. Биологические характеристики массовых видов хирономид Cricotopus salinophilus и Chironomus salinarius из соленых рек Приэльтонья: жизненные циклы, удельная продукция // Изв. Самар. науч. центра РАН. Т. 17. № 4. С. 210.
- Голубков С.М. 2000. Функциональная экология личинок амфибиотических насекомых. СПб.: Зоол. ин-т РАН.
- Добрынин Э.Г. 1978. Первичная продукция в рапных водоемах Крыма // Биология внутренних вод: Информ. бюл. № 38. С. 20.
- Калюжная И.Ю., Калюжная Н.С., Леумменс Х.Дж.Л. 2019. Опыт использования картографических методов и ГИС в проектировании биосферного резервата “Эльтонский” // ИНТЕРКАРТО/ ИНТЕРГИС. Т. 25. № 1. С. 337.
- Колпаков Н.В. 2015. Продукция макрозообентоса в эстуариях Приморья // Изв. ТИНРО. Т. 182. С. 197.
- Канапацкий Т.А., Самылина О.С., Плотников А.О. и др. 2018. Микробные процессы продукции и деструкции органического вещества в солоноводных реках Приэльтонья (Волгоградская область) // Микробиология. Т. 87. № 1. С. 56. https://doi.org/10.7868/S002636561801007X
- Канапацкий Т.А., Самылина О.С., Головатюк Л.В. и др. 2024. Продукционный потенциал соленой реки Чернавка (Приэльтонье) // Микробиология. Т. 93. № 2. С. 122. https://doi.org/10.31857/S0026365624020046
- Кривошеина М.Г. 2004. Морфологические и экологические механизмы устойчивости гидробионтных личинок двукрылых (Insecta, Diptera) к экстремальным условиям: Диссертация. М.: Ин-т проблем экологии и эволюции им. А.Н. Северцова.
- Курашов Е.А. 2007. Методы и подходы для количественного изучения пресноводного мейобентоса // Актуальные вопросы изучения микро-, мейозообентоса и фауны зарослей пресноводных водоемов. Нижний Новгород: “Вектор ТиС”. С. 5. https://nationalatlas.ru/tom2
- Курашов Е.А. 2007а. Мейобентос в пресноводных экосистемах. Его роль и перспективы исследования // Актуальные вопросы изучения микро-, мейозообентоса и фауны зарослей пресноводных водоемов. Нижний Новгород: “Вектор ТиС”. С. 36.
- Матишов Г.Г., Голубева Н.И. 2010. Значение аридных и семиаридных зон в системе современного природопользования России // Современное состояние и технологии мониторинга аридных и семиаридных экосистем юга России. Ростов-на-Дону: Изд-во Юж. науч. центра РАН. С. 11.
- Методика изучения биогеоценозов внутренних водоемов. 1975. М.: Наука.
- Национальный атлас России. 2007. Т. 2: Природа. Экология.
- Номоконова В.И., Зинченко Т.Д., Попченко Т.В. 2013. Трофическое состояние соленых рек бассейна оз. Эльтон // Изв. Самар. науч. центра РАН. Т. 15. № 3(1). С. 476.
- Сухарев Е.А. 2015. Влияние пищевых ресурсов на распределение и экологическое разобщение пролетных куликов: Диссертация. М.: Москов. пед. гос. ун-т.
- Шерстюк В.В. 1971. Калорийность кормовых организмов Кременчугского водохранилища // Гидробиол. журн. Т. 7. № 6. С. 99.
- Шитиков В.К., Розенберг Г.С. 2013. Рандомизация и бутстреп: статистический анализ в биологии и экологии с использованием R. Тольятти: “Кассандра”.
- Ankar S., Elmgren R. 1976. The benthic macro- and meiofauna of the Asko-Landsort area (Northern Baltic Proper). A. Stratified Random Sampling Survey. Contributions from the Asko laboratory. V. 11. P. 1.
- Barahona J., Millán A., Velasco J. 2005. Population dynamics, growth and production of Sigara selecta (Fiebre, 1848) (Hemiptera, Corixidae) in a Mediterranean hypersaline stream // Freshwater Biol. V. 50. P. 2101. https://doi.org/10.1111/j.13652427.2005.01463.x
- Brans K.I., Vad C.F., Horváth Z. et al. 2024. Regional and fine-scale local adaptation in salinity tolerance in Daphnia inhabiting contrasting clusters of inland saline waters // Proc. R. Soc. B. V. 291. P. 20231917. https://doi.org/10.1098/rspb.2023.1917
- Buchwalter D.B., Jenkins J.J., Curtis L.R. 2002. Respiratory strategy is a major determinant of [3H]water and [14C]chlorpyrifos uptake in aquatic insects // Can. J. Fish Aquat. Sci. V. 59. P. 1315.
- Bunn S.E., Davies P.M. 1992. Community structure of the macroinvertebrate fauna and water quality of a saline river system in southwestern Australia // Hydrobiologia. V. 248. P. 143. https://doi.org/10.1007/BF00006082
- Carr M.H., Neigel J.E., Estes J.A. et al. 2003. Comparing marine and terrestrial ecosystems: implications for the design of coastal marine reserves // Ecol. Appl. V. 13. P. 90. https://doi.org/10.1890/1051-0761(2003)013[0090:CMATEI]2.0.CO;2
- Fernandes E., Teixeira C., Bordalo A. 2019. Coupling between hydrodynamics and chlorophyll a and bacteria in a temperate estuary: a box model approach // Water. V. 11. P. 588. https://doi.org/10.3390/w11030588
- Frost P.C., Stelzer R.S., Lamberti G.A., Elser J.J. 2002. Ecological stoichiometry of trophic interactions in the benthos: uderstanding the role of C:N:P ratios in littoral and lotic habitats // J. North. Am. Benthol. Soc. V. 21. P. 515. https://doi.org/10.2307/1468427
- Gallardo-Mayenco A. 1994. Freshwater macroinvertebrate distribution in two basins with different salinity gradients (Guadalete and Guadaira river basins, south-western Spain) // Int. J. Salt Lake Res. V. 3. P. 75. https://doi.org/10.1007/BF01990644
- Golovatyuk L.V. 2023. Salinity Tolerance and Seasonal and Multiyear Dynamics of Biting Midges (Diptera, Ceratopogonidae) in Macrozoobenthos Communities of Saline Rivers (the Lake Elton Basin, Russia) // Inland Water Biol. V. 16. P. 1088. https://doi.org/10.1134/S199508292306010X
- Golovatyuk L.V., Zinchenko T.D., Nazarova L.B. 2020. Macrozoobenthic communities of the saline Bolshaya Samoroda River (Lower Volga region, Russia): Species composition, density, biomass and production // Aquat. Ecol. V. 54. P. 57. https://doi.org/10.1007/s10452-019-09726-z
- Golovatyuk L.V., Prokin A.A., Nazarova L.B., Zinchenko T.D. 2022. Biodiversity, distribution and production of macrozoobenthos communities in the saline Chernavka River (Lake Elton basin, South-West Russia) // Limnology. V. 23. № 2. P. 337. https://doi.org/10.1007/s10201-021-00692-w
- Golovatyuk L.V., Zinchenko T.D., Sushchik N.N. et al. 2018. Biological aspects of the associations of biting midges (Diptera: Ceratopogonidae) in two saline rivers of the Elton Lake basin // Mar. Freshwater Res. V. 69. P. 906. https://doi.org/10.1071/MF17125
- Gusakov V.A., Gagarin V.G. 2012. Meiobenthos Composition and Structure in Highly Mineralized Tributaries of Lake El’ton // Arid Ecosystems. V. 2. № 4. P. 232. https://doi.org/10.1134/S2079096112030067
- Gusakov V.A., Makhutova O.N., Gladyshev M.I. et al. 2021. Ecological role of Cyprideis torosa and Heterocypris salina (Crustacea, Ostracoda) in saline rivers of the Lake Elton basin: abundance, biomass, production, fatty acids // Zool. Stud. V. 60. P. 53. https://doi.org/10.6620/ZS.2021.60-53
- Hammer U. T. 1981. Primary production in saline lakes // Hydrobiologia. V. 81. P. 47.
- Herman P.M.J., Heip C. 1982. Growth and Respiration of Cyprideis torosa Jones 1850 (Crustacea Ostracoda) // Oecologia V. 54 P. 300. https://doi.org/10.1007/BF00379996
- Herman P.M.J., Heip C., Vranken G. 1983.The production of Cyprideis torosa Jones 1850 (Crustacea, Ostracoda) // Oecologia. V. 58. P. 326. https://doi.org/10.1007/BF00385231
- Kaeriyama H., Ikeda T. 2004. Metabolism and chemical composition of mesopelagic ostracods in the western North Pacific Ocean // ICES Journal of Marine Science. V. 61. P. 535. https://doi.org/10.1016/j.icesjms.2004.03.009
- Kefford B.J., Piscart C., Hickey H.L. et al. 2012. Global scale variation in the salinity sensitivity of riverine macroinvertebrates: eastern Australia, France, Israel and South Africa // PLoS ONE. V. 7. e35224. https://doi.org/10.1371/journal.pone.0035224
- Kefford B.J., Buchwalter D., Canedo-Arguelles M. et al. 2016. Salinized rivers: egraded systems or new habitats for salttolerant faunas? // Biol. Lett. V. 12. P. 20151072. https://doi.org/10.1098/rsbl.2015.1072
- Liess A., Hillebrand H. 2005. Stoichiometric variation in C:N, C:P, and N:P ratios of littoral benthic invertebrates // J. North. Am. Benthol. Soc. V. 24. P. 256. https://doi.org/10.1899/04-015.1
- Methods for the Estimation of Production of Aquatic Animals. 1971. London: Acad. Press.
- Pimenov N.V., Bonch-Osmoloyskaya E.A. 2006. In situ activity studies in thermal environments // Methods in Microbiology. London: Elsevier. P. 29.
- Ponti M., Colangelo M.A., Ceccherelli V.U. 2007. Composition, biomass and secondary production of the macrobenthic invertebrate assemblages in a coastal lagoon exploited for extensive aquaculture: Valle Smarlacca (northern Adriatic Sea) // Estuar. Coast. Shelf. V. 75. P. 79. https://doi.org/10.1016/j.ecss.2007.01.021
- Saccò M., White N.E., Harrod C. et al. 2021. Salt to conserve: a review on the ecology and preservation of hypersaline ecosystems // Biol. Rev. V. 96. P. 2828. https://doi.org/10.1111/brv.12780
- Sterner R.W., Elser J.J. 2002. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. New Jersey: Princeton Univ. Press.
- Strayer D., Likens G.E. 1986. An energy budget for the zoobenthos of Mirror Lake, New Hampshire // Ecology. V. 67. P. 303.
- Shu W.S., Huang L.N. 2022. Microbial diversity in extreme environments // Nature Reviews Microbiol. V. 20. P. 219. https://doi.org/10.1038/s41579-021-00648-y
- Szekely T., Bamberger Z. 1992. Predation of waders (Charadrii) on prey populations: an exclosure experiment // J. Anim. Ecol. V. 61. P. 447.
- Torregroza-Espinosa A.C., Restrepo J.C., Escobar J. et al. 2021. Spatial and temporal variability of temperature, salinity and chlorophyll-a in the Magdalena River mouth, Caribbean Sea // J. South. Am. Earth. Sci. V. 105. P. 102978.
- Turner R.E., Milan C.S., Swenson E.M., Lee J.M. 2022. Peak chlorophyll a concentrations in the lower Mississippi River from 1997 to 2018 // Limnol., Oceanogr. V. 67. P. 703. https://doi.org/10.1002/lno.12030
- Velasco J., Millan A., Hernandez J. et al. 2006. Response of biotic communities to salinity changes in a Mediterranean hyper stream // Saline Syst. V. 2. P. 12. https://doi.org/10.1186/1746-1448-2-12
- Waters T.F. 1977. Secondary Production in Inland Waters // Advances in Ecological Research. V. 10. P. 91. https://doi.org/10.1017/S0376892902000103
- Williams D.D., Williams N.E. 1974. A counterstaining technique for use in sorting benthic samples // Limnol., Oceanogr. V. 19. P. 152. https://doi.org/10.4319/lo.1974.19.1.0152
- Zinchenko T.D., Gladyshev M.I., Makhutova O.N. et al. 2014. Rivers provide arid landscapes with a considerable amount of biochemically valuable production of chironomid (Diptera) larvae // Hydrobiologia. V. 722. P. 115. https://doi.org/10.1007/S10750-013-1684-5
Supplementary files
