Peripheral immune-inflammatory parameters of the Parkinson's disease. Dependence on the stage of progression
- Authors: Idova G.V.1, Zhanaeva S.Y.1, Alperina E.L.1, Dzemidovich S.S.1, Gevorgyan M.M.1, Kulikova K.I.1, Aftanas L.I.1
-
Affiliations:
- Scientific Research Institute of Neurosciences and Medicine
- Issue: Vol 90, No 3 (2025)
- Pages: 403-413
- Section: Articles
- URL: https://journal-vniispk.ru/0320-9725/article/view/294700
- DOI: https://doi.org/10.31857/S0320972525030051
- EDN: https://elibrary.ru/BKHBPC
- ID: 294700
Cite item
Abstract
According to modern concepts, neuroinflammation and peripheral immune dysfunction play a key role in the onset and progression of Parkinson's disease (PD), one of the most common and severe neurodegenerative diseases. However, changes of cellular and molecular immune parameters under development of PD are still little defined. The work is devoted to the analysis of immune cell populations (monocytes, T and B cells and their subtypes), expression of Toll-like receptors (TLR) and spontaneous and mitogen-induced production of pro- and anti-inflammatory cytokines in the peripheral blood of patients at different stages of idiopathic PD and healthy individuals. It is shown that the stage II of PD is characterized by a decrease in the amount of CD3+ T cells, an increase in TLR2 expression on CD4+CD25+ Tregs, as well as an increase in the spontaneous production of proinflammatory cytokines IFNγ and IL-17A. Stage III of PD is associated with a decrease in the production of mitogen-induced IFNγ. The relative number of CD19+CD25+ Breg cells in patients with PD increased regardless of the disease stage. Thus, the obtained results indicate differences in cellular and molecular immune parameters existing in patients with PD and in healthy individuals, which are dependent on the stage of the disease. These data are important for understanding the molecular basis of PD development and prognosis of its course, and may be useful in identifying biomarkers of disease severity and developing new treatment approaches depending on the stage of the disease.
About the authors
G. V. Idova
Scientific Research Institute of Neurosciences and Medicine
Author for correspondence.
Email: galina-idova@mail.ru
Russian Federation, 630117 Novosibirsk
S. Y. Zhanaeva
Scientific Research Institute of Neurosciences and Medicine
Email: zhanaevasy@neuronm.ru
Russian Federation, 630117 Novosibirsk
E. L. Alperina
Scientific Research Institute of Neurosciences and Medicine
Email: galina-idova@mail.ru
Russian Federation, 630117 Novosibirsk
S. S. Dzemidovich
Scientific Research Institute of Neurosciences and Medicine
Email: galina-idova@mail.ru
Russian Federation, 630117 Novosibirsk
M. M. Gevorgyan
Scientific Research Institute of Neurosciences and Medicine
Email: galina-idova@mail.ru
Russian Federation, 630117 Novosibirsk
K. I. Kulikova
Scientific Research Institute of Neurosciences and Medicine
Email: galina-idova@mail.ru
Russian Federation, 630117 Novosibirsk
L. I. Aftanas
Scientific Research Institute of Neurosciences and Medicine
Email: galina-idova@mail.ru
Russian Federation, 630117 Novosibirsk
References
- Blauwendraat, C., Nalls, M. A., and Singleton, A. B. (2020) The genetic architecture of Parkinson's disease, Lancet Neurol., 19, 70-178, doi: 10.1016/S1474-4422(19)30287-X.
- Furgiuele, A., Pereira, F. C, Martini, S., Marino, F., and Cosentino M. (2023) Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin. Transl. Immunol., 2, e1469, doi: 10.1002/cti2.1469.
- Fornari Laurindo, L., Aparecido Dias, J., Cressoni Araújo A., Torres Pomini, K., Machado Galhardi, C., Rucco Penteado Detregiachi, C., Santos de Argollo Haber, L., Donizeti Roque D., Dib Bechara, M., Vialogo Marques de Castro, M., de Souza Bastos Mazuqueli Pereira, E., José Tofano, R., Jasmin Santos German Borgo, I., and Maria Barbalho S. (2024) Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression, Front. Immunol., 14, 1305933, doi: 10.3389/fimmu.2023.1305933.
- Harms, A.S., Ferreira, S. A., and Romero-Ramos, M. (2021) Periphery and brain, innate and adaptive immunity in Parkinson's disease, Acta Neuropathol., 141, 527-545, doi: 10.1007/s00401-021-02268-5.
- Brochard, V., Combadière, B., Prigent, A., Laouar, Y., Perrin, A., Beray-Berthat, V., Bonduelle, O., Alvarez-Fischer, D., Callebert, J., Launay, J. M., Duyckaerts, C., Flavell, R. A., Hirsch, E. C., and Hunot, S. (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease, J. Clin. Invest., 119, 182-192, doi: 10.1172/JCI36470.
- MacMahon Copas, A. N., McComish, S. F., Fletcher, J. M., and Caldwell, M. A. (2021) The pathogenesis of Parkinson’s disease: a complex interplay between astrocytes, microglia, and T lymphocytes? Front Neurol., 12, 666737, doi: 10.3389/fneur.666737.
- Williams, G. P., Schonhoff, A. M., Sette, A., and Lindestam Arlehamn, C. S. (2022) Central and peripheral inflammation: connecting the immune responses of Parkinson's disease, J. Parkinsons Dis., 12 (s1), S129-S136, doi: 10.3233/JPD-223241.
- Lauritsen, J., and Romero-Ramos, M. (2023) The systemic immune response in Parkinson's disease: focus on the peripheral immune component, Trends Neurosci., 46, 863-878, doi: 10.1016/j.tins.2023.07.005.
- Cen, L., Yang, C., Huang, S., Zhou, M., Tang, X., Li, K., Guo, W., Wu, Z., Mo, M., Xiao, Y., Chen, X., Yang, X., Huang, Q., Chen, C., Qu, S., and Xu, P. (2017) Peripheral lymphocyte subsets as a marker of Parkinson's disease in a Chinese population, Neurosci. Bull., 33, 493-500, doi: 10.1007/s12264-017-0163-9.
- Baird, J. K., Bourdette, D., Meshul, C. K., and Quinn, J. F. (2019) The key role of T cells in Parkinson's disease pathogenesis and therapy, Parkinsonism Relat. Disord., 60, 25-31, doi: 10.1016/j.parkreldis.2018.10.029.
- Contaldi, E., Magistrelli, L., and Comi, C. (2022) T Lymphocytes in Parkinson's disease, J. Parkinsons Dis., 12, S65-S74, doi: 10.3233/JPD-223152.
- Sun, C., Zhao, Z., Yu, W., Mo, M., Song, C, Si, Y., and Liu, Y. (2019) Abnormal subpopulations of peripheral blood lymphocytes are involved in Parkinson's disease, Ann. Transl. Med., 7, 637, doi: 10.21037/atm.2019.10.105.
- Idova, G. V., Al'perina, E. L., Gevorgyan, M. M., Tikhonova, M. A., and Zhanaeva, S. Y. (2021) Content of peripheral blood T- and B-cell subpopulations in transgenic A53T mice of different age (a model of Parkinson's disease), Bull. Exp. Biol. Med., 170, 401-404, doi: 10.1007/s10517-021-05075-w.
- Dzamko, N., Gysbers, A., Perera, G., Bahar, A., Shankar, A., Gao, J., Fu, Y., and Halliday, G. M. (2017). Toll-like receptor 2 is increased in neurons in Parkinson's disease brain and may contribute to alpha-synuclein pathology, Acta Neuropathol., 13, 303-319, doi: 10.1007/s00401-016-1648-8.
- El-Zayat, S. R., Sibaii, H., and Mannaa, F. A. (2019) Toll-like receptors activation, signaling, and targeting: an overview, Bull. Natl. Res. Centre, 43, 187, doi: 10.1186/s42269-019-0227-2.
- Heidari, A., Yazdanpanah, N., and Rezaei, N. (2022) The role of Toll-like receptors and neuroinflammation in Parkinson's disease, J. Neuroinflamm., 19, 135, doi: 10.1186/s12974-022-02496-w.
- Hasegawa, Y., Inagaki, T., Sawada, M., and Suzumura A. (2000) Impaired cytokine production by peripheral blood mononuclear cells and monocytes/macrophages in Parkinson's disease, Acta Neurol. Scand., 101, 159-164, doi: 10.1034/j.1600-0404.2000.101003159.
- Белова О. В., Арефьева Т. И., Москвина С. Н (2020) Иммуновоспалительные аспекты болезни Паркинсона, Журн. Неврол. Психиатр. им. С.С. Корсакова, 120, 110-119, doi: 10.17116/jnevro2020120021110.
- Reale, M., Iarlori C., Thomas, A., Gambi, D., Perfetti, B., Di Nicola, M., and Onofrj, M. (2009) Peripheral cytokines profile in Parkinson's disease, Brain Behav. Immun., 23, 55-63, doi: 10.1016/j.bbi.2008.07.003.
- Воронина Н. А., Кучеряну В. Г., Ветрилэ Л. А., Голоборщева В. В., Капица И. Г., Воронова Т. А., Морозов С. Г. (2021) Изучение влияния гимантана на уровень провоспалительных цитокинов в нигрокудатном комплексе мозга мышей при экспериментальном паркинсонизме, Патогенез, 19, 45-49, doi: 10.25557/2310-0435.2021.02.45-49.
- Идова Г. В., Альперина Е. Л., Жанаева С. Я.,Тихонова М. А., Геворгян М. М. (2022) Экспрессия Toll-подобных рецепторов TLR2 и TLR4 типа на иммунных клетках и продукция про- и противовоспалительных цитокинов в трансгенной модели болезни Паркинсона, Патогенез, 20, 38-43, doi: 10.2557/2310-0435-2022.3.38-43.
- Qu, Y., Li, J., Qin, Q., Wang, D., Zhao, J., An, K., Mao, Z., Min, Z., Xiong, Y., Li., J, and Xue, Z. (2023) A systematic review and meta-analysis of inflammatory biomarkers in Parkinson's disease, NPJ Parkinsons Dis., 9, 18, doi: 10.1038/s41531-023-00449-5.
- Милюхина И. В., Карпенко М. Н., Клименко В. М. (2015) Клинические показатели и уровень цитокинов в крови и цереброспинальной жидкости пациентов с болезнью Паркинсона, Клин. Мед., 93, 51-55.
- Hughes, A. J., Ben-Shlomo, Y, Daniel, S. E., Daniel, S. E., and Lees, A. J. (2021) What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study, Neurology, 57, S34-S38.
- Hoehn, M. M., and Yahr, M. D. (1967) Parkinsonism: onset, progression, and mortality, Neurology, 17, 427-442, doi: 10.1212/wnl17.5.427.
- Chen, X., Feng., Ou, R., Liu., J, Yang, J., Fu, J., Cao, B., Chen, Y., Wei, Q., and Shang, H. (2021) Evidence for peripheral immune activation in Parkinson's disease, Front. Aging Neurosci., 13, 617370, doi: 10.3389/fnagi.2021.617370.
- Galiano-Landeira, J., Torra, A., Vila, M., and Bové, J. (2020) CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson's disease, Brain, 143, 3717-3733, doi: 10.1093/brain/awaa269.
- Yan, Z., Yang, W., Wei, H., Dean, M. N., Standaert, D. G., Cutter, G. R., Benveniste, E. N., and Qin, H. (2021) Dysregulation of the adaptive immune system in patients with early-stage Parkinson’s disease, Neurol. Neuroimmunol. Neuroinflamm., 8, e1036, doi: 10.1212/NXI.0000000000001036.
- Yang, J., Ran, M., Li, H., Lin, Y., Ma, K., Yang, Y., Fu, X., and Yang, S. (2022) New insight into neurological degeneration: Inflammatory cytokines and blood-brain barrier, Front. Mol. Neurosci., 15, 1013933, doi: 10.3389/fnmol.2022.1013933.
- Weiss, F., Labrador-Garrido, A., Dzamko, N., and Halliday, G. (2022) Immune responses in the Parkinson's disease brain, Neurobiol. Dis., 168, 105700, doi: 10.1016/j.nbd.2022.105700.
- Жанаева С. Я., Альперина Е. Л., Геворгян М. М., Дземедович С. С., Идова Г. В. (2020) В-клетки в периферической крови при болезни Паркинсона. Клинические и экспериментальные данные, Сиб. Вест. Психиатр. Наркол., 3, 11-16, doi: 10.26617/1810-3111-2020-3(108)-11-16.
- Cerri, S., Mus, L., and Blandini, F. (2019) Parkinson's disease in women and men: What's the difference? J. Parkinsons Dis., 9, 501-515, doi: 10.3233/JPD-191683.
- Ahn, J. J., Abu-Rub, M., and Miller, R. H. (2021) B cells in neuroinflammation: new perspectives and mechanistic insights, Cells, 10, 1605, doi: 10.3390/cells10071605.
- Zhang, Z., Xie, X., Cai, Y., Liu, P., Liu, S., Chen, R., Wang, J., Wang, Y., Zhao, Y., Zhu, Z., Zhang, X., and Wu, J. (2023) Abnormal immune function of B lymphocyte in peripheral blood of Parkinson's disease, Parkinsonism Relat. Disord., 116, 105890, doi: 10.1016/j.parkreldis.2023.105890.
- Álvarez-Luquín, D. D., Arce-Sillas, A., Leyva-Hernández, J., Sevilla-Reyes, E., Boll, M. C., Montes-Moratilla, E., Vivas-Almazán, V., Pérez-Correa, C., Rodríguez-Ortiz, U., Espinoza-Cárdenas, R., Fragoso, G., Sciutto, E., and Adalid-Peralta, L. (2019) Regulatory impairment in untreated Parkinson’s disease is not restricted to Tregs: other regulatory populations are also involved, J. Neuroinflamm., 16, 212, doi: 10.1186/s12974-019-1606-1.
- Li, R., Tropea, T. F., Baratta, L. R., Zuroff, L., Diaz-Ortiz, M. E., Zhang, B., Shinoda, K., Rezk, A., Alcalay, R. N., Chen-Plotkin, A., and Bar-Or, A. (2021) Abnormal B-cell and Tfh-cell profiles in patients with Parkinson’s disease: a cross-sectional study, Neurol. Neuroimmunol. Neuroinflamm., 9, e1125, doi: 10.1212/NXI.0000000000001125.
- Kessel, A., Haj, T., Peri, R., Snir, A., Melamed, D., Sabo, E., and Toubi, E. (2012) Human CD19+CD25high B regulatory cells suppress proliferation of CD4+ T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells, Autoimmun. Rev., 11, 670-607, doi: 10.1016/j.autrev.2011.11.018.
- Adamu, A., Li, S., Gao, F., and Xue, G. (2024) The role of neuroinflammation in neurodegenerative diseases: current understanding and future therapeutic targets, Front. Aging Neurosci., l16, 1347987, doi: 10.3389/fnagi.2024.1347987.
- Gruden, M. A., Sewell, R. D., Yanamandra, K., Davidova, T. V., Kucheryanu, V. G., Bocharov, E. V., Bocharova, O. A., Polyschuk, V. V., Sherstnev, V. V., and Morozova-Roche, L. A. (2011) Immunoprotection against toxic biomarkers is retained during Parkinson's disease progression, J. Neuroimmunol., 233, 221-227, doi: 10.1016/j.jneuroim.2010.12.001.
- Eidson, L. N., Kannarkat, G. T., Barnum, C. J., Chang, J., Chung, J., Caspell-Garcia, C., Taylor, P., Mollenhauer, B., Schlossmacher, M. G., Ereshefsky, L., Yen, M., Kopil, C., Frasier, M., Marek, K., Hertzberg, V. S., and Tansey, M. G. (2017) Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson's disease, J. Neuroinflamm., 14, 164, doi: 10.1186/s12974-017-0935-1.
- Barcia, C., Ros, C. M., Annese, V., Gómez, A., and Ros-Bernal, F. (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease, Cell Death Dis., 2, e142, doi: 10.1038/cddis.2011.17.
- Shi, Y., Wei, B., Li, L., Wang, B., and Sun, M. (2022) Th17 cells and inflammation in neurological disorders: possible mechanisms of action, Front. Immunol., 13, 932152, doi: 10.3389/fimmu.2022.932152.
- Kim, R., Kim, H. J., Kim, A., Jang, M., Kim, A., Kim, Y., Yoo, D., Im, J. H., Choi, J. H., and Jeon, B. (2018) Peripheral blood inflammatory markers in early Parkinson's disease, J. Clin. Neurosci., 58, 30-33, doi: 10.1016/j.jocn.2018.10.079.
Supplementary files
