MITOCHONDRIAL RETICULUM OF SKELETAL MUSCLES. PROVEN AND HYPOTHETICAL FUNCTIONS
- Authors: Bakeeva L.E.1, Vays V.B.1, Vangeli I.M.1, Eldarov C.M.1, Popkov V.A.1, Zorova L.D.2,3, Zorov S.D.1, Zorov D.B.1
-
Affiliations:
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation
- Issue: Vol 90, No 12 (2025)
- Pages: 2063–2076
- Section: Articles
- URL: https://journal-vniispk.ru/0320-9725/article/view/376129
- DOI: https://doi.org/10.7868/S3034529425120112
- ID: 376129
Cite item
Abstract
About the authors
L. E. Bakeeva
Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
V. B. Vays
Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
I. M. Vangeli
Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
C. M. Eldarov
Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
V. A. Popkov
Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
L. D. Zorova
Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University; Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian FederationMoscow, Russia; Moscow, Russia
S. D. Zorov
Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia
D. B. Zorov
Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Email: zorov@belozersky.msu.ru
Moscow, Russia
References
- Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism, Nature, 191, 144-148, https://doi.org/10.1038/191144a0.
- Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. Camb. Philos. Soc., 41, 445-502, https://doi.org/10.1111/j.1469-185X.1966.tb01501.x.
- Mitchell, P. (2011) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biochim. Biophys. Acta, 1807, 1507-1538, https://doi.org/10.1016/j.bbabio.2011.09.018.
- Walker, J. E. (1998) ATP synthesis by rotary catalysis Nobel lecture, Angew. Chem. Int. Ed. Engl., 3717, 2308-2319, https://doi.org/10.1002/(SICI)1521-3773(19980918)37:17<2308::AID-ANIE2308>3.0.CO;2-W.
- Walker, J. E. (2013) The ATP synthase: the understood, the uncertain, and the unknown, Biochem. Soc. Trans., 41, 1-16, https://doi.org/10.1042/BST20110773.
- Juhaszova, M., Kobrinsky, E. Zorov, D. B. Nuss, H. B., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2021) ATP synthase K+and H+-fluxes drive ATP synthesis and enable mitochondrial K+ – “Uniporter” function: I. Characterization of ion fluxes, Function (Oxf), 3, zqab065, https://doi.org/10.1093/function/zqab065.
- Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, H. B., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2022) ATP synthase K+and H+-fluxes drive ATP synthesis and enable mitochondrial K+ – “Uniporter” function: II. Ion and ATP synthase flux regulation, Function (Oxf), 3, zqac001, https://doi.org/10.1093/function/zqac001.
- Juhaszova, M., Kobrinsky, E., Zorov, D. B., Aon, M. A., Cortassa, S., and Sollott, S. J. (2022) Setting the record straight: a new twist on the chemiosmotic mechanism of oxidative phosphorylation, Function (Oxf), 3, zqac018, https://doi.org/10.1093/function/zqac018.
- Zorov, D. B. (2022) A window to the potassium world. the evidence of potassium energetics in the mitochondria and identity of the mitochondrial ATP-dependent K+ channel, Biochemistry (Moscow), 87, 683-688, https://doi.org/10.1134/S0006297922080016.
- Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M., Sollott, S. J., and Zorov, D. B. (2018) Mitochondrial membrane potential, Anal. Biochem., 552, 50-59, https://doi.org/10.1016/j.ab.2017.07.009.
- Yaniv, Y., Juhaszova, M., Nuss, H. B., Wang, S., Zorov, D. B., Lakatta, E. G., and Sollott, S. J. (2010) Matching ATP supply and demand in mammalian heart: in vivo, in vitro, and in silico perspectives, Ann. N. Y. Acad. Sci., 1188, 133-142, https://doi.org/10.1111/j.1749-6632.2009.05093.x.
- Skulachev, V. P. (1971) Energy transformations in the respiratory chain, Curr. Top. Bioenergetics, 4, 127-190, https://doi.org/10.1016/B978-0-12-152504-0.50010-1.
- Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1978) Mitochondrial framework reticulum mitochondriale in rat diaphragm muscle, Biochim. Biophys. Acta, 501, 349-369, https://doi.org/10.1016/0005-27287890104-4.
- Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1981) Ontogenesis of mitochondrial reticulum in rat diaphragm muscle, Eur. J. Cell Biol., 25, 175-181.
- Bakeeva, L. E., Chentsov, Y. S., and Skulachev, V. P. (1983) Intermitochondrial contacts in myocardiocytes, J. Mol. Cell Cardiol., 15, 413-420, https://doi.org/10.1016/0022-2828(83)90261-4.
- Drachev, V. A., and Zorov, D. B. (1986) Mitochondria as an electric cable. Experimental testing of a hypothesis [in Russian], Dokl. Acad. Sci. USSR, 287, 1237-1238.
- Amchenkova, A. A., Bakeeva, L. E., Chentsov, Y. S., Skulachev, V. P., and Zorov, D. B. (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes, J. Cell. Biol., 107, 481-495, https://doi.org/10.1083/jcb.107.2.481.
- Glancy, B., Hartnell, L. M., Malide, D., Yu, Z. X., Combs, C. A., Connelly, P. S., Subramaniam, S., and Balaban, R. S. (2015) Mitochondrial reticulum for cellular energy distribution in muscle, Nature, 523, 617-620, https://doi.org/10.1038/nature14614.
- Glancy, B., Hartnell, L. M., Combs, C. A., Femnou, A., Sun, J., Murphy, E., Subramaniam, S., and Balaban, R. S. (2017) Power grid protection of the muscle mitochondrial reticulum, Cell Rep., 19, 487-496, https://doi.org/10.1016/j.celrep.2017.03.063.
- Buffenstein, R. (2008) Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species, J. Comp. Physiol. B., 4, 439-445, https://doi.org/10.1007/s00360-007-0237-5.
- Sahm, A., Bens, M., Szafranski, K., Holtze, S., Growth, M., Görlach, M., Calkhoven, C., Müller, C., Schwab, M., Kestler, H. A., Cellerino, A., Burda, H., Hildebrandt, T., Dammann, P., and Platzer, M. (2018) Long-lived rodents reveal signatures of positive selection in genes associated with lifespan, PLoS Genet., 14, e1007272, https://doi.org/10.1371/journal.pgen.1007272.
- Vays, V., Vangeli, I., Eldarov, C., Popkov, V., Holtze, S., Hildebrandt, T., Averina, O., Zorov, D., and Bakeeva, L. (2022) Unique features of the tissue structure in the naked mole rat (Heterocephalus glaber): hypertrophy of the endoplasmic reticulum and spatial mitochondrial rearrangements in hepatocytes, Int. J. Mol. Sci., 13, 9067, https://doi.org/10.3390/ijms23169067.
- Vays, V., Vangely, I., Eldarov, C., Holtze, S., Hildebrandt, T., Bakeeva, L., and Skulachev, V. (2021) Progressive reorganization of mitochondrial apparatus in aging skeletal muscle of naked mole rats (Heterocephalus glaber) as revealed by electron microscopy: potential role in continual maintenance of muscle activity, Aging (Albany NY), 13, 24524-24541, https://doi.org/10.18632/aging.203720.
- Zorov, D. B., Krasnikov, B. F., Kuzminova, A. E., Vysokikh, M. Yu., and Zorova, L. D. (1997) Mitochondria revisited. Alternative functions of mitochondria, Biosci. Rep., 17, 507-520, https://doi.org/10.1023/a:1027304122259.
- Vorobjev, I. A., and Zorov, D. B. (1983) Diazepam inhibits cell respiration and induces fragmentation of mitochondrial reticulum, FEBS Lett., 163, 311-314, https://doi.org/10.1016/0014-5793(83)80842-4.
- Avad, A. S., Vorobjev, I. A., and Zorov, D. B. (1984) Fragmentation of mitochondrial reticulum, Proceedings of the XVI Congress of FEBS, abst. XI-80.
- Bereiter-Hahn, J., and Vöth, M. (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria, Microsc. Res. Tech., 27, 198-219, https://doi.org/10.1002/jemt.1070270303.
- Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domnina, L. V., Minin, A. A., Pletjushkina, O. Y., Saprunova, V. B., Skulachev, I. V., Tsyplenkova, V. G., Vasiliev, J. M., Yaguzhinsky, L. S., and Zorov, D. B. (2004) Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis, Mol. Cell. Biochem., 256-257, 341-358, https://doi.org/10.1023/B:MCBI.0000009880.94044.49.
- Plotnikov, E. Y., Vasileva, A. K., Arkhangelskaya, A. A., Pevzner, I. B., Skulachev, V. P., and Zorov, D. B. (2008) Interrelations of mitochondrial fragmentation and cell death under ischemia/reoxygenation and UV-irradiation: protective effects of SkQ1, lithium ions and insulin, FEBS Lett., 582, 3117-3124, https://doi.org/10.1016/j.febslet.2008.08.002.
- Zorov, D. B., Popkov, V. A., Zorova, L. D., Vorobjev, I. A., Pevzner, I. B., Silachev, D. N., Zorov, S. D., Jankauskas, S. S., Babenko, V. A., and Plotnikov, E. Y. (2017) Mitochondrial aging: is there a mitochondrial clock? J. Gerontol. A Biol. Sci. Med. Sci., 72, 1171-1179, https://doi.org/10.1093/gerona/glw184.
- Zorov, D. B., Vorobjev, I. A., Popkov, V. A., Babenko, V. A., Zorova, L. D., Pevzner, I. B., Silachev, D. N., Zorov, S. D., Andrianova, N. V., and Plotnikov, E. Y. (2019) Lessons from the discovery of mitochondrial fragmentation (fission): a review and update, Cells, 8, 175, https://doi.org/10.3390/cells8020175.
- Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., Hildebrandt, T. B., and Sadovnichii, V. A. (2017) Neoteny, prolongation of youth: from naked mole rats to naked apes” (humans), Physiol. Rev., 97, 699-720, https://doi.org/10.1152/physrev.00040.2015.
- Andziak B., O’Connor T. P., Qi W., DeWaal E. M., Pierce A., Chaudhuri A. R., Van Remmen H., and Buffenstein R. (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat, Aging Cell, 5, 463-471, https://doi.org/10.1111/j.1474-9726.2006.00237.x.
- Pérez, V. I., Buffenstein, R., Masamsetti, V., Leonard, S., Salmon, A. B., Mele, J., Andziak, B., Yang, T., Edrey, Y., Friguet, B., Ward, W., Richardson, A., and Chaudhuri, A. (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat, Proc. Natl. Acad. Sci. USA, 106, 3059-3064, https://doi.org/10.1073/pnas.0809620106.
- Lewis, K. N., Andziak, B., Yang, T., and Buffenstein R. (2013) The naked mole-rat response to oxidative stress: just deal with it, Antioxid. Redox. Signal, 19, 1388-1399, https://doi.org/10.1089/ars.2012.4911.
- Bulthuis, E. P., Adjobo-Hermans, M. J. W., Willems, P. H. G. M., and Koopman, W. J. H. (2019) Mitochondrial morphofunction in mammalian cells, Antioxid. Redox Signal., 30, 2066-2109, https://doi.org/10.1089/ars.2018.7534.
- Teixeira, P., Galland, R., and Chevrollier, A. (2024) Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic, Semin. Cell. Dev. Biol., 159-160, 38-51, https://doi.org/10.1016/j.semcdb.2024.01.006.
- Chance, B., and Williams, G. R. (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state, J. Biol. Chem., 217, 409-427.
- Chance, B., and Williams, G. R. (1956) The respiratory chain and oxidative phosphorylation, Adv. Enzymol. Relat. Subj. Biochem., 17, 65-134, https://doi.org/10.1002/9780470122624.ch2.
- Hackenbrock, C. R. (1966) Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria, J. Cell Biol., 30, 269-297, https://doi.org/10.1083/jcb.30.2.269.
- Green, D. E., Asai, J., Harris, R. A., and Penniston, J. T. (1968) Conformational basis of energy transformations in membrane systems. 3. Configurational changes in the mitochondrial inner membrane induced by changes in functional states, Arch. Biochem. Biophys., 125, 684-705, https://doi.org/10.1016/0003-9861(68)90626-7.
- Penniston, J. T., Harris, R. A., Asai, J., and Green, D. E. (1968) The conformational basis of energy transformations in membrane systems. I. Conformational changes in mitochondria, Proc. Natl. Acad. Sci. USA, 59, 624-631, https://doi.org/10.1073/pnas.59.2.624.
- Harris, R. A., Penniston, J. T., Asai, J., and Green, D. E. (1968) The conformational basis of energy conservation in membrane systems. II. Correlation between conformational change and functional states, Proc. Natl. Acad. Sci. USA, 59, 830-837, https://doi.org/10.1073/pnas.59.3.830.
- Hunter, G. R., Kamishima, Y., and Brierley, G. P. (1969) Ion transport by heart mitochondria. XV. Morphological changes associated with the penetration of solutes into isolated heart mitochondria, Biochim. Biophys. Acta, 180, 81-97, https://doi.org/10.1016/0005-2728(69)90196-0.
- Stoner, C. D., and Sirak, H. D. (1969) Osmotically-induced alterations in volume and ultrastructure of mitochondria isolated from rat liver and bovine heart, J. Cell Biol., 43, 521-538, https://doi.org/10.1083/jcb.43.3.521.
- Hunter, G. R., and Brierley, G. P. (1971) On the “energized-twisted” configuration of isolated beef heart mitochondria, J. Cell Biol., 50, 250-255, https://doi.org/10.1083/jcb.50.1.250.
- Mannella, C. A. (2020) Consequences of folding the mitochondrial inner membrane, Front. Physiol., 11, 536, https://doi.org/10.3389/fphys.2020.00536.
- Adams, R. A., Liu, Z., Hsieh, C., Marko, M., Lederer W. J., Jafri M. S., and Mannella C. (2023) Structural analysis of mitochondria in cardiomyocytes: insights into bioenergetics and membrane remodeling, Curr. Issues Mol. Biol., 45, 6097-6115, https://doi.org/10.3390/cimb45070385.
- Perkins, G., Renken, C., Martone, M. E., Young, S. J., Ellisman, M., and Frey, T. (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts, J. Struct. Biol., 119, 260-272, https://doi.org/10.1006/jsbi.1997.3885.
- Perkins, G. A., Song, J. Y., Tarsa, L., Deerinck, T. J., Ellisman, M. H., and Frey T. G. (1998) Electron tomography of mitochondria from brown adipocytes reveals crista junctions, J. Bioenerg. Biomembr., 30, 431-442, https://doi.org/10.1023/a:1020586012561.
- Smith, R. A., and Ord, M. J. (1983) Mitochondrial form and function relationships in vivo: their potential in toxicology and pathology, Int. Rev. Cytol., 83, 63-134, https://doi.org/10.1016/S0074-7696(08)61686-1.
- Wikstrom, J. D., Twig, G., and Shirihai, O. S. (2009) What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int. J. Biochem. Cell Biol., 41, 1914-1927, https://doi.org/10.1016/j.biocel.2009.06.006.
- Kuznetsov, A. V., Troppmair, J., Sucher, R., Hermann, M., Saks, V., and Margreiter, R. (2006) Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: possible physiological role? Biochim. Biophys. Acta, 1757, 686-691, https://doi.org/10.1016/j.bbabio.2006.03.014.
- Kuznetsov, A. V., and Margreiter, R. (2009) Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity, Int. J. Mol. Sci., 10, 1911-1929, https://doi.org/10.3390/ijms10041911.
- Popkov, V. A., Plotnikov, E. Y., Lyamzaev, K. G., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Jankauskas, S. S., Zorov, S. D., Babenko, V. A., and Zorov, D. B. (2015) Mitodiversity, Biochemistry (Moscow), 80, 532-541, https://doi.org/10.1134/S000629791505003X.
- Ryu, K. W., Fung, T. S., Baker, D. C., Saoi, M., Park, J., Febres-Aldana, C. A., Aly, R. G., Cui, R., Sharma, A., Fu, Y., Jones, O. L., Cai, X., Pasolli, H. A., Cross, J. R., Rudin, C. M., and Thompson, C. B. (2024) Cellular ATP demand creates metabolically distinct subpopulations of mitochondria, Nature, 635, 746-754, https://doi.org/10.1038/s41586-024-08146-w.
- Narendra, D. P., and Youle, R. J. (2024) The role of PINK1-Parkin in mitochondrial quality control, Nat. Cell. Biol., 26, 1639-1651, https://doi.org/10.1038/s41556-024-01513-9.
- Giacomello, M., Pyakurel, A., Glytsou, C., and Scorrano, L. (2020) The cell biology of mitochondrial membrane dynamics, Nat. Rev. Mol. Cell Biol., 21, 204-224, https://doi.org/10.1038/s41580-020-0210-7.
- Twig, G., Elorza, A., Molina, A. J. A., Mohamed, H., Wikstrom, J. D., Walzer, G., Stiles, L., Haigh, S. E., Katz,S., Las, G., Alroy, J., Wu, M., Py, B. F., Yuan, J., Deeney, J. T., Corkey, B. E., and Shirihai, O. S. (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy, EMBO J., 27, 433-446, https://doi.org/10.1038/sj.emboj.7601963.
- Hoffman, H. P., and Avers, C. H. (1973) Mitochondrion of yeast: ultrastructural evidence for one giant, branched organelle per cell, Science, 181, 749-751, https://doi.org/10.1126/science.181.4101.749.
- Pratt, S. A. (1968) An electron microscope study of nebenkern formation and differentiation in spermatids of Murgantia histrionica (Hemiptera, Pentatomidae), J. Morphol., 126, 31-65, https://doi.org/10.1002/jmor.1051260104.
- Heasman, J., Quarmby, J., and Wylie, C. C. (1984) The mitochondrial cloud of Xenopus oocytes: the source of germinal granule material, Dev. Biol., 105, 458-469, https://doi.org/10.1016/0012-1606(84)90303-8.38.
- Andre, J. (1962) Contribution to the knowledge of the chondriome study of its ultrastructural modifications during spermatogenesis [in French], J. Ultrastruct. Res. Suppl., 3, 1-185.
- Fawcett, D. W. (1958) The structure of the mammalian spermatozoon, Int. Rev. Cytol., 7, 195-234, https://doi.org/10.1016/S0074-7696(08)62688-1.
- Eddy, E. M. (1974) Fine structural observations on the form and distribution of nuage in germ cells of the rat, Anat. Rec., 178, 731-757, https://doi.org/10.1002/ar.1091780406.
- Motta, P. M., Nottola, S. A., Makabe, S., and Heyn, R. (2000) Mitochondrial morphology in human fetal and adult female germ cells, Hum. Reprod., 15, 129-147, https://doi.org/10.1093/humrep/15.suppl_2.129.
- Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K., Ivanova, O. Y., Domnina, L. V., Chernyak, B. V., and Skulachev, V. P. (2006) Effect of oxidative stress on dynamics of mitochondrial reticulum, Biochim. Biophys. Acta, 1757, 518-524, https://doi.org/10.1016/j.bbabio.2006.03.018.
- Gottlieb, R. A., and Gustafsson, A. B. (2011) Mitochondrial turnover in the heart, Biochim. Biophys. Acta, 1813, 1295-301, https://doi.org/10.1016/j.bbamcr.2010.11.017.
- Coronado, M., Fajardo, G., Nguyen, K., Zhao, M., Kooiker, K., Jung, G., Hu, D. Q., Reddy, S., Sandoval, E., Stotland, A., Gottlieb, R. A., and Bernstein, D. (2018) Physiological mitochondrial fragmentation is a normal cardiac adaptation to increased energy demand, Circ. Res., 122, 282-295, https://doi.org/10.1161/CIRCRESAHA.117.310725.
- Abramicheva, P. A., Andrianova, N. V., Babenko, V. A., Zorova, L. D., Zorov, S. D., Pevzner, I. B., Popkov, V. A., Semenovich, D. S., Yakupova, E. I., Silachev, D. N., Plotnikov, E. Y., Sukhikh, G. T., and Zorov, D. B. (2023) Mitochondrial network: electric cable and more, Biochemistry (Moscow), 88, 1596-1607, https://doi.org/10.1134/S0006297923100140.
- Zorov, D. B., Filburn C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes, J. Exp. Med., 192, 1001-1014, https://doi.org/10.1084/jem.192.7.1001.
- Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2006) Mitochondrial ROS-induced ROS release: an update and review, Biochim. Biophys. Acta, 1757, 509-517, https://doi.org/10.1016/j.bbabio.2006.04.029.
- Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release, Physiol. Rev., 94, 909-950, https://doi.org/10.1152/physrev.00026.2013.
- Krogh, A. (1919) The supply of oxygen to the tissues and the regulation of the capillary circulation, J. Physiol., 52, 457-474, https://doi.org/10.1113/jphysiol.1919.sp001844.
- Levitt, D. G. (1972) Capillary-tissue exchange kinetics: an analysis of the Krogh cylinder model, J. Theor. Biol., 34, 103-124, https://doi.org/10.1016/0022-5193(72)90058-6.
- McGuire, B. J., and Secomb, T. W. (2001) A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand, J. Appl. Physiol., 91, 2255-2265, https://doi.org/10.1152/jappl.2001.91.5.2255.
Supplementary files


