Experience in Numerical Hydrodynamic Simulation of Long River Reaches

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article formulates the main requirements to numerical algorithms for hydrodynamic 2D-modeling of long and very long river segments with lengths of up to several thousand kilometers. The main feature is the use of adaptive unstructured mesh along with algorithms that give correct values of water surface elevations on coarse mesh, taking into account abrupt changes of bed elevations. A hydrodynamic model of a segment of the Amur R. with a total length of >3 thous. km is presented, which is based on a numerical solution of two-dimensional shallow-water equations (Saint-Venant) by a new high-accuracy algorithm, taking into account road and protection structures in the floodplain. The stages of model construction and verification are described, and the results of calculations for an extraordinary flood in 2013 and a high flood in 2020 are given. Water levels (with estimates of their errors) and the rates of water discharge at gages are given along with flow fields and the inundation zones of floodplain areas.

Авторлар туралы

V. Belikov

Water Problems Institute of RAS

Email: belvv@bk.ru
Moscow, 119333 Russia

A. Aleksyuk

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia; Moscow State University, 119991, Moscow, Russia

Email: vasilevaes@yandex.ru
Россия, 119333, Москва; Россия, 119991, Москва

N. Borisova

Water Problems Institute, Russian Academy of Sciences (WPI RAS), 119333, Moscow, Russia

Email: borisovanm@mail.ru
Россия, 119333, Москва

E. Vasil’eva

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: vasilevaes@yandex.ru
Россия, 119333, Москва

A. Glotko

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia; Moscow State University of Civil Engineering, 129337, Moscow, Russia

Хат алмасуға жауапты Автор.
Email: vasilevaes@yandex.ru
Россия, 119333, Москва; 129337 Россия, Москва

Әдебиет тізімі

  1. Алабян А.М., Василенко А.Н., Демиденко Н.А., Крыленко И.Н., Панченко Е.Д., Попрядухин А.А. Приливная динамика вод в дельте Печоры в летнюю межень // Вестн. Моск. ун-та. Сер. 5, География. 2022. № 1. С. 167–179.
  2. Алабян А.М., Крыленко И.Н., Лебедева С.В., Панченко Е.Д. Мировой опыт численного моделирования динамики потока в устьях рек // Вод. ресурсы. 2022. Т. 49. № 5. С. 552–567.
  3. Американский спутник наблюдения за поверхностью Земли, находящийся в ведении геологической службы США (USGS.) https://earthexplorer.usgs.gov/
  4. Беликов В.В. Вычислительный комплекс “TRIANA” – генератор сеток треугольных конечных элементов в произвольных плоских областях. М.: ГосФАП СССР, П007705, 1984.
  5. Беликов В.В., Алексюк А.И. Модели мелкой воды в задачах речной гидродинамики М.: РАН, 2020. 346 с.
  6. Беликов В.В., Алексюк А.И., Борисова Н.М., Глотко А.В., Румянцев А.Б. Оценка изменения уровней затопления поймы Нижнего Дона под влиянием хозяйственной деятельности. Ретроспективное гидродинамическое моделирование // Вод. ресурсы. 2022. Т. 49. № 6. С. 681–690.
  7. Беликов В.В., Борисова Н.М., Румянцев А.Б., Бугаец А.Н. Численная гидродинамическая модель стоково-приливных течений в Амурском лимане // Сб. науч. тр. Всерос. конф. “Водные ресурсы: новые вызовы и пути решения”. Новочеркасск: Лик, 2017. С. 480–485.
  8. Беликов В.В., Глотко А.В. Компьютерное моделирование паводковых и меженных течений в Чебоксарском водохранилище с применением различных численных методов // Природообустройство и рациональное природопользование – необходимые условия социально-экономического развития России. Сб. науч. тр. Ч. I. М.: МГУП, 2005. С. 204–210.
  9. Беликов В.В., Зайцев А.А., Зернов А.В. и др. Гидродинамическая модель Невы // Тр. международ. науч.-практ. конф. “Безопасность речных судоходных гидротехнических сооружений”. Кн. I. СПб., 2008. С. 155–174.
  10. Беликов В.В., Колесников Ю.М., Иваненко С.А. Математическое моделирование пропуска весеннего половодья через городской бьеф р. Москвы // Вод. ресурсы. 2001. Т. 28. № 5. С. 566–572.
  11. Беликов В.В., Милитеев А.Н. Двухслойная математическая модель катастрофических паводков // Вычислительные технологии. 1992. Т. 1. № 3. С. 167–174.
  12. Беликов В.В., Милитеев А.Н. Численная модель морских нагонов в приустьевых участках рек // Сб. науч. тр. КаГУ. Калининград, 1993. С. 15–23.
  13. Беликов В.В., Третьюхина (Васильева) Е.С., Кочетков В.В., Зайцев А.А., Савельев Р.А., Сосунов И.В. Компьютерное моделирование катастрофического заторного наводнения в районе г. Ленска // БЭС. Вып. 12. М.: НИИЭС, 2004. С. 220–249.
  14. Калугин А.С., Мотовилов Ю.Г. Модель формирования стока для бассейна реки Амур // Вод. ресурсы. 2018. Т. 45. № 2. С. 121–132.
  15. Кюнж Ж.А., Холли Ф.М., Вервей А. Численные методы в задачах речной гидравлики. М.: Энергоатомиздат, 1985. 255с.
  16. Лебедева С.В., Алабян А.М., Крыленко И.Н., Федорова Т.А. Наводнения в устье Северной Двины и их моделирование // Геориск. 2015. № 1. С. 18–25.
  17. Мотовилов Ю.Г., Данилов-Данильян В.И., Дод Е.В., Калугин А.С. Оценка противопаводкового эффекта действующих и планируемых водохранилищ в бассейне Среднего Амура на основе физико-математических гидрологических моделей // Вод. ресурсы. 2015. Т. 42. № 5. С. 476–491.
  18. Неров И.О., Краснопеев С.М., Бугаец А.Н., Беликов В.В., Глотко А.В., Борисова Н.М., Васильева Е.С., Кролевецкая Ю.В. Опыт создания цифровой модели рельефа для гидродинамических расчетов в бассейне р. Амур // Вестн. ДВО РАН. 2021. № 6 (220) С. 45–55.
  19. НЦ ОМЗ. Космические аппараты типа “Канопус-В”. http://www.ntsomz.ru/ks_dzz/satellites/kanopus_vulkan
  20. НЦ ОМЗ. Космические аппараты типа “Ресурс-П”. http://www.ntsomz.ru/ks_dzz/satellites/resurs_p
  21. Проект ArcGIS Online (США). https://www.arcgis.com/home/ item.html?id= 10df2279f9684e4a9f- 6a7f08febac2a9; Airbus Defence and Space (Франция). WorldDEM™ – The New Standard of Global Elevation Models. Elevation Models. https://www.intelligence-airbusds. com/imagery/reference-layers/ worlddem/worlddem-thematic-layers-and-derivatives/
  22. Румянцев А.Б., Беликов В.В. Оценка рисков воздействия экстремальных гидрометеорологических явлений и техногенных паводков на объекты повышенной опасности // Сб. науч. тр. Всерос. науч. конф. “Научное обеспечение реализации “Водной стратегии Российской Федерации на период до 2020 г.”. Петрозаводск, 2015. Т. 2. С. 38–44.
  23. Свид. 2014612182 об официальной регистрации программы для ЭВМ. Программный комплекс для расчета течений, деформаций дна и переноса загрязнений в протяженной и разветвленной системе русел (RIVER_1D). В.В. Беликов, В.В. Кочетков. № 2 013 619 720. 2014. Реестр программ для ЭВМ. 1 с.
  24. Свид. 2 002 610 941 об официальной регистрации программы для ЭВМ. Комплекс программ для расчета речных течений (FLOOD). Беликов В.В., Милитеев А.Н. № 200 610 689. 2002. Реестр программ для ЭВМ. 1 с.
  25. Свид. 2001610638 об официальной регистрации программы для ЭВМ. Комплекс программ для расчета волн прорыва (БОР). В.В. Беликов, А.Н. Милитеев, В.В. Кочетков. № 2 001 610 454. 2001. Реестр программ для ЭВМ. 1 с.
  26. Свид. 2 017 660 266 о государственной регистрации программ для ЭВМ. Программный комплекс STREAM 2D CUDA для расчета течений, деформаций дна и переноса загрязнений в открытых потоках с использованием технологий Compute Unified Device Architecture (на графических процессорах NVIDIA). А.И. Алексюк, В.В.Беликов. № 2 017 617 252. 2017. Реестр программ для ЭВМ. 1 с.
  27. Свид. 2 020 660 617 о государственной регистрации программы для ЭВМ. Решатель задачи Римана для уравнений мелкой воды с разрывным дном. А.И. Алексюк, М.А. Малахов, В.В. Беликов. № 2 020 619 746. 2020. Реестр программ для ЭВМ. 1 с.
  28. Abreu C.H.M., Barros M.L.C., Brito D.C., Teixeira M.R., Cunha A.C. Hydrodynamic Modeling and Simulation of Water Residence Time in the Estuary of the Lower Amazon River // Water. 2020. V. 12 (3). 660. https://doi.org/10.3390/w12030660
  29. Alabyan A.M., Lebedeva S.V. Flow dynamics in large tidal delta of the Northern Dvina River: 2D simulation // J. Hydroinformatics. 2018. V. 20. № 4. P. 798–814. https://doi.org/10.2166/hydro.2018.051
  30. Aleksyuk A.I., Belikov V.V. The uniqueness of the exact solution of the Riemann problem for the shallow water equations with discontinuous bottom // J. Comp. Phys. 2019. V. 390. P. 232–248. https://doi.org/10.1016/j.jcp.2019.04.001
  31. Aleksyuk A.I., Malakhov M.A., Belikov V.V. The exact Riemann solver for the shallow water equations with a discontinuous bottom // J. Comp. Phys. 2022. V. 450. P. 110801. https://doi.org/10.1016/j.jcp.2021.110801
  32. Belikov V.V., Aleksyuk A.I., Borisova N.M., Vasilieva E.S., Norin S.V., Rumyantsev A.B. Justification of Hydrological Safety Conditions in Residential Areas Using Numerical Modelling // Water Resour. 2018. V. 45. Suppl. 1. P. S39–S49.
  33. Belikov V.V., Borisova N.M., Aleksyuk A.I., Rumyantsev A.B., Glotko A.V., Shurukhin L.A. Hydraulic substantiation of the Bagaevskaya hydro complex project based on numerical hydrodynamic modeling // Power Technol. Engineering. 2018. V. 52. № 4. P. 372–388. https://doi.org/10.1007/s10749-018-0962-9
  34. Glotko A.V., Aleksyuk A.I., Borisova N.M., Vasil’eva E.S., Fedorova T.A., Krasnopeev S.M., Nerov I.O., Belikov V.V. A numerical hydrodynamic 2D model of the Amur and Zeya Rivers and the Amur Liman // 4th Int. Conf. Status Future WORLDs LARGE RIVERS. M.: VGU, 2021. P. 230–231
  35. Goutal N., Maurel F. Proceedings of the 2nd workshop on dam-break wave simulation // Electricité de France. Direction des études et recherches. 1997. 192 p.
  36. Kornilova E.D., Morozova E.A., Krylenko I.N., Fingert E.A., Golovlyov P.P., Zavadsky A.S., Belikov V.V. Study of Channel Changes in the Lena River Near Yakutsk Based on Long-Term Data, Satellite Images and Two-Dimensional Hydrodynamic Model // Climate Change Impacts on Hydrological Processes and Sediment Dynamics: Measurement, Modelling and Management / Eds S. Chalov, V. Golosov, R. Li, A. Tsyplenkov. Cham: Springer Int. Publ., 2019. P. 104–109.
  37. Krylenko I.N., Belikov V.V., Fingert E., Golovlyov P.P., Glotko A.V., Zavadskii A.S., Samokhin M.A., Borovkov S. Analysis of the Impact of Hydrotechnical Construction on the Amur River near Blagoveshchensk and Heihe Cities Using a Two-Dimensional Hydrodynamic Model // Water Resour. 2018. V. 45. Suppl. 1. P. S112–S121.
  38. Lu. S., Tong C., Lee D.-Y., Zheng J., Shen J., Zhang W., Yan Y. Propagation of tidal waves up in Yangtze Estuary during the dry season // J. Geophysic. Res. Oceans. 2015. V. 120 (9). P. 6445–6473. https://doi.org/10.1002/2014JC010414

© В.В. Беликов, А.И. Алексюк, Н.М. Борисова, Е.С. Васильева, А.В. Глотко, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».