Measuring similarity between Karel programs using character and word n-grams
- Authors: Sidorov G.1, Ibarra Romero M.1, Markov I.1, Guzman-Cabrera R.2, Chanona-Hernández L.3, Velásquez F.4
-
Affiliations:
- Instituto Politécnico Nacional (IPN)
- Engineering Division
- Instituto Politécnico Nacional
- Polytechnic University of Queretaro
- Issue: Vol 43, No 1 (2017)
- Pages: 47-50
- Section: Article
- URL: https://journal-vniispk.ru/0361-7688/article/view/176478
- DOI: https://doi.org/10.1134/S0361768817010066
- ID: 176478
Cite item
Abstract
We present a method for measuring similarity between source codes. We approach this task from the machine learning perspective using character and word n-grams as features and examining different machine learning algorithms. Furthermore, we explore the contribution of the latent semantic analysis in this task. We developed a corpus in order to evaluate the proposed approach. The corpus consists of around 10,000 source codes written in the Karel programming language to solve 100 different tasks. The results show that the highest classification accuracy is achieved when using Support Vector Machines classifier, applying the latent semantic analysis, and selecting as features trigrams of words.
About the authors
G. Sidorov
Instituto Politécnico Nacional (IPN)
Author for correspondence.
Email: sidorov@cic.ipn.mx
Mexico, Mexico City
M. Ibarra Romero
Instituto Politécnico Nacional (IPN)
Email: francisco.castillo@upq.mx
Mexico, Mexico City
I. Markov
Instituto Politécnico Nacional (IPN)
Author for correspondence.
Email: markovilya@yahoo.com
Mexico, Mexico City
R. Guzman-Cabrera
Engineering Division
Author for correspondence.
Email: guzmanc81@gmail.com
Mexico, Guanajuato
L. Chanona-Hernández
Instituto Politécnico Nacional
Author for correspondence.
Email: lchanona@gmail.com
Mexico, Mexico City
F. Velásquez
Polytechnic University of Queretaro
Author for correspondence.
Email: francisco.castillo@upq.mx
Mexico, Queretaro
Supplementary files
