The use of artificial neural networks for classification of signal sources in cognitive radio systems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the paper, methods of classification of signal sources in cognitive radio systems that are based on artificial neural networks are discussed. A novel method for improving noise immunity of RBF networks is suggested. It is based on introducing an additional self-organizing layer of neurons, which ensures automatic selection of variances of basis functions and a significant reduction of the network dimension. It is shown that the use of auto-associative networks in the problem of the classification of sources of signals makes it possible to minimize the feature space without significant deterioration of its separation properties.

Sobre autores

S. Adjemov

Moscow Technical University of Communications and Informatics

Email: nvklenov@gmail.com
Rússia, ul. Aviamotornaya 8a, Moscow, 111024

N. Klenov

Moscow Technical University of Communications and Informatics

Autor responsável pela correspondência
Email: nvklenov@gmail.com
Rússia, ul. Aviamotornaya 8a, Moscow, 111024

M. Tereshonok

Moscow Technical University of Communications and Informatics

Email: nvklenov@gmail.com
Rússia, ul. Aviamotornaya 8a, Moscow, 111024

D. Chirov

Moscow Technical University of Communications and Informatics

Email: nvklenov@gmail.com
Rússia, ul. Aviamotornaya 8a, Moscow, 111024

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016