The use of artificial neural networks for classification of signal sources in cognitive radio systems
- Autores: Adjemov S.S.1, Klenov N.V.1, Tereshonok M.V.1, Chirov D.S.1
-
Afiliações:
- Moscow Technical University of Communications and Informatics
- Edição: Volume 42, Nº 3 (2016)
- Páginas: 121-128
- Seção: Article
- URL: https://journal-vniispk.ru/0361-7688/article/view/176422
- DOI: https://doi.org/10.1134/S0361768816030026
- ID: 176422
Citar
Resumo
In the paper, methods of classification of signal sources in cognitive radio systems that are based on artificial neural networks are discussed. A novel method for improving noise immunity of RBF networks is suggested. It is based on introducing an additional self-organizing layer of neurons, which ensures automatic selection of variances of basis functions and a significant reduction of the network dimension. It is shown that the use of auto-associative networks in the problem of the classification of sources of signals makes it possible to minimize the feature space without significant deterioration of its separation properties.
Palavras-chave
Sobre autores
S. Adjemov
Moscow Technical University of Communications and Informatics
Email: nvklenov@gmail.com
Rússia, ul. Aviamotornaya 8a, Moscow, 111024
N. Klenov
Moscow Technical University of Communications and Informatics
Autor responsável pela correspondência
Email: nvklenov@gmail.com
Rússia, ul. Aviamotornaya 8a, Moscow, 111024
M. Tereshonok
Moscow Technical University of Communications and Informatics
Email: nvklenov@gmail.com
Rússia, ul. Aviamotornaya 8a, Moscow, 111024
D. Chirov
Moscow Technical University of Communications and Informatics
Email: nvklenov@gmail.com
Rússia, ul. Aviamotornaya 8a, Moscow, 111024
Arquivos suplementares
