Carbon Storage by Siberian Larch in the Upper Treeline Ecotone in the Polar Urals

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the upper treeline ecotone the relationships between the values of biometric parameters of Siberian larch (average radius of the horizontal projection of the crown, the diameter of the tree at the root collar and its height) were studied using ground-based measurements on circular sample plots and ultra-high spatial resolution aerial photographs obtained by an unmanned aerial vehicle. A nonlinear regression model, a model using the random forest method and an ensemble of models using machine learning methods were created, establishing the relationship between the values of the diameter at the root collar and the crown radius of a specimen of Siberian larch. The resulting models have a high level of adequacy at the qualitative and quantitative (R2> 0.95) levels. The predictive capabilities of the nonlinear regression model outside the training set were better than those of the machine learning models, so it was used together with allometric equations to quantify the phytomass of Siberian larch based on the root collar diameter and carbon sequestration in the study area using data obtained from the interpretation of the crowns of 88 608 Siberian larch trees. It was found that in the ecotone of the upper boundary of tree vegetation on an area of 7.32 km2, the aboveground and belowground phytomass of Siberian larch is 1355.2 tons of dry mass, which contains 677.6 tons of carbon, or 2484.5 tons of CO2equivalent.

Авторлар туралы

A. Mikhailovich

Ural State Forest Engineering University; Ural Federal University

Email: a.p.mikhailovich@yandex.ru
Russia 620100 Yekaterinburg, Sibirsky Tract, 37; Russia 620062 Yekaterinburg, Mira St., 19

V. Fomin

Ural State Forest Engineering University

Email: a.p.mikhailovich@yandex.ru
Russia 620100 Yekaterinburg, Sibirsky Tract, 37

D. Golikov

Botanical Garden, Ural Branch, Russian Academy of Sciences

Email: a.p.mikhailovich@yandex.ru
Russia 620144 Yekaterinburg, 8 Marta St., 202a

E. Agapitov

Ural State Forest Engineering University

Email: a.p.mikhailovich@yandex.ru
Russia 620100 Yekaterinburg, Sibirsky Tract, 37

V. Rogachev

Ural State Forest Engineering University

Email: a.p.mikhailovich@yandex.ru
Russia 620100 Yekaterinburg, Sibirsky Tract, 37

V. Mazepa

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: a.p.mikhailovich@yandex.ru
Russia 620144 Yekaterinburg, 8 Marta St., 202

Әдебиет тізімі

  1. Shiyatov S.G., Terent’ev M.M., Fomin V.V.et al. Altitudinal and horizontal shifts of the upper boundaries of open and closed forests in the Polar Urals in the 20th century // Russ. J. Ecol. 2007. V. 38. P. 223–227. https://doi.org/10.1134/S1067413607040017
  2. Hagedorn F., Shiyatov S.G., Mazepa V.S.et al. Treeline advances along the Urals mountain range – driven by improved winter conditions? // Glob. Chang. Biol. 2014. V. 20. P. 3530–3543. https://doi.org/10.1111/gcb.12613
  3. Kharuk V.I., Im S.T., Dvinskaya M.L.Forest-tundra ecotone response to climate change in the Western Sayan Mountains, Siberia// Scand. J. For. Res. 2010. V. 25. P. 224–233. https://doi.org/10.1080/02827581003766959.
  4. Grigor’ev A.A., Devi N.M., Kukarskikh V. V.et al. Structure and Dynamics of Tree Stands at the Upper Timberline in the Western Part of the Putorana Plateau // Russ. J. Ecol. 2019. V. 50. P. 311–322. https://doi.org/10.1134/S1067413619040076
  5. Moiseev P.A., Galimova A.A., Bubnov M.O.et al. Tree Stands and Their Productivity Dynamics at the Upper Growing Limit in Khibiny on the Background of Modern Climate Changes // Russ. J. Ecol. 2019. V. 50. P. 431–444. https://doi.org/10.1134/S1067413619050084
  6. Dufour-Tremblay G., Lévesque E., Boudreau S.Dynamics at the treeline: Differential responses ofPicea marianaandLarix laricinato climate change in eastern subarctic Québec// Environ. Res. Lett. 2012. V. 7. Art. 044038. https://doi.org/ 10.1088/1748-9326/7/4/044038
  7. Mamet S.D., Brown C.D., Trant A.J.et al. Shifting globalLarixdistributions: Northern expansion and southern retraction as species respond to changing climate // J. Biogeogr. 2019. V. 46. P. 30–44. https://doi.org/10.1111/jbi.13465
  8. Kullman L.Rapid recent range margin rise of tree and shrub species in the Swedish Scandes // J. Ecol. 2002. V. 90. P. 68–77.
  9. Bryn A., Potthoff K.Elevational treeline and forest line dynamics in Norwegian mountain areas – a review// Landsc. Ecol. 2018. V. 33. P. 1225–1245. https://doi.org/10.1007/s10980-018-0670-8
  10. Camarero J.J., Gutiérrez E., Fortin M.-J.Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries // Glob. Ecol. Biogeogr. 2006. V. 15. P. 182–191. https://doi.org/10.1111/j.1466-822x.2006.00211.x
  11. Bakker J., Olivera M.M., Hooghiemstra H.Holocene environmental change at the upper forest line in northern Ecuador // Holocene. 2008. V. 18. P. 877–893.
  12. Chhetri P.K.Predicting upslope expansion of sub-alpine forest in the Makalu Barun National Park, Eastern Nepal, with a hybrid cartographic mode // J. For. Res. 2018. V. 29. P. 129–137. https://doi.org/10.1007/s11676-017-0421-8
  13. Chiu C.-A., Lee M.-F., Tzeng H.-Y.et al. A concise scheme of vegetation boundary terms in subtropical high mountains // Afr. J. Agr. Res. 2014. V. 9. P. 1560–1570. https://doi.org/10.5897/AJAR2012.471
  14. Lenoir J., Svenning J.C.Climate-related range shifts – a global multidimensional synthesis and new research directions // Ecography (Cop.). 2015. V. 38. P. 15–28. https://doi.org/10.1111/ecog.00967
  15. Mohan M., Silva C.A., Klauberg C.Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest // Forests. 2017. V. 8. P. 1–17. https://doi.org/10.3390/f8090340.
  16. Peña J.M., de Castro A.I., Torres-Sánchez J.et al. Estimating tree height and biomass of a poplar plantation with image-based UAV technology // AIMS Agric. Food. 2018. V. 3. P. 313–323. https://doi.org/10.3934/AGRFOOD.2018.3.313
  17. Ahmadi S.A., Ghorbanian A., Golparvar F.et al. Individual tree detection from unmanned aerial vehicle (UAV) derived point cloud data in a mixed broadleaf forest using hierarchical graph approach // Eur. J. Remote Sens. 2022. V. 55. P. 520–539. https://doi.org/10.1080/22797254.2022.2129095
  18. Lin J., Chen D., Yang S.et al. Precise aboveground biomass estimation of plantation forest trees using the novel allometric model and UAV-borne LiDAR // Front. For. Glob. Chang. 2023. V. 6. Art. 1166349. https://doi.org/10.3389/ffgc.2023.1166349
  19. Shiyatov S.G., Terent’ev M.M., Fomin V.V.Spatiotemporal dynamics of forest-tundra communities in the Polar Urals // Russ. J. Ecol. 2005. V. 36. P. 69–75. https://doi.org/10.1007/s11184-005-0051-9
  20. Panova N.K., Jankovska V., Korona O.M.et al. Holocene Dynamics of Vegetation and Ecological Conditions in the Polar Urals // Russ. J. Ecol. 2003. V. 34. P. 19–230.
  21. Wong C.M., Lertzman K.P.Errors in estimating tree age: implications for studies of stand dynamics// Can. J. For. Res. 2001. V. 31. P. 1262–1271. https://doi.org/10.1139/cjfr-31-7-1262
  22. Elliott G.P., Kipfmueller K.F.Multi-scale Influences of Slope Aspect and Spatial Pattern on Ecotonal Dynamics at Upper Treeline in the Southern Rocky Mountains, U.S.A // Arctic, Antarctic, and Alpine Research.2018.V. 42.P. 45–56. https://doi.org/10.1657/1938-4246-42.1.45
  23. Мазепа В.С., Шиятов С.Г.Динамика верхней границы леса на Полярном Урале в связи с изменениями климата // Вопросы географии: Исследования гор. Горные регионы Северной Евразии. Развитие в условиях глобальных изменений. 2014.V. 137.C. 290.
  24. Devi N.M., Kukarskih V. V., Galimova A.A.Climate change evidence in tree growth and stand productivity at the upper treeline ecotone in the Polar Ural Mountains // For.Ecosyst. 2020. V. 7. P. 1–16. https://doi.org/10.1186/s40663-020-0216-9.
  25. Методика количественного определения объема поглощений парниковых газов от 27.05.2022 № 371 / [Электронный ресурс].—URL: https://docs.cntd.ru/document/350962750 (датаобращения: 20.10.2024).
  26. Random Forest Regression: When Does It Fail and Why? // neptune.ai URL: https://neptune.ai/blog/random-forest-regression-when-does-it-fail-and-why (дата обращения: 09.05.2025).
  27. Hengl T., Nussbaum M., Wright M.N.et al. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables // PeerJ. 2018. V. 6. Art. e5518.
  28. https: //doi.org/10.7717/peerj.5518
  29. Усольцев В.А., Часовских В.П., Норицина Ю.В.и др. Аллометрические модели фитомассы деревьев для лазерного зондирования и наземной таксации углеродного пула в лесах Евразии: сравнительный анализ // Сибирский лесной журн. 2016. № 4. С. 68–76. https://doi.org/10.15372/sjfs20160407
  30. Усольцев В.А., Цепордей И.С., Норицин Д.В.Аллометрические модели биомассы деревьев лесо- образующих пород Урала // Леса России и хозяйство в них. 2022. № 1. С. 4–14. https://doi.org/10.51318/fret.2022.85.72.001
  31. Фомин В.В., Рогачев В.Е., Агапитов Е.М.и др. Депонирование углерода основными лесообразующими древесными породами карбонового полигона Свердловской области // Леса России и хозяйство в них. 2024.№4.С. 3–15.
  32. Su R., Du W., Ying H.et al. Estimation of Aboveground Carbon Stocks in Forests Based on LiDAR and Multispectral Images: A Case Study of Duraer Coniferous Forests// Forests. 2023. V. 14. Art. 992.
  33. https: //doi.org/10.3390/f14050992
  34. Juan-Ovejero R., Elghouat A., Navarro C.J.et al. Estimation of aboveground biomass and carbon stocks ofQuercus ilexL. saplings using UAV-derived RGB imagery // Ann. For. Sci. 2023. V. 80.P. 1–24. https://doi.org/10.1186/s13595-023-01210-x

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».