Влияние погодных условий в течение постдиапаузного развития боярышницы aporia crataegi l. (lepidoptera: pieridae) на изменчивость жилкования крыльев

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучено влияние температуры воздуха и количества осадков в течение постдиапаузного развития преимагинальных стадий, а также размеров крыльев на встречаемость отклонений от нормального жилкования у имаго боярышницы Aporia crataegi. Проанализированы выборки, собранные в 2013–2022 гг. в природной популяции на юге Свердловской области. Показано, что встречаемость нарушений жилкования крыльев зависит от погодных условий во время развития гусениц и куколок весной и от размеров имаго. Некоторые варианты чаще встречаются в годы с холодной и дождливой весной, в то время как проявление других не зависит от погодных условий. Одни варианты нарушений жилкования чаще возникают у мелких имаго, другие, – наоборот, у крупных. Полученные результаты свидетельствуют о разной степени канализованности и чувствительности процессов развития жилок крыльев боярышницы к влиянию факторов окружающей среды.

Полный текст

Доступ закрыт

Об авторах

И. А. Солонкин

Институт экологии растений и животных УрО РАН

Автор, ответственный за переписку.
Email: igorsolonkin@yandex.ru
Россия, Екатеринбург

Е. Ю. Захарова

Институт экологии растений и животных УрО РАН

Email: igorsolonkin@yandex.ru
Россия, Екатеринбург

А. О. Шкурихин

Институт экологии растений и животных УрО РАН

Email: igorsolonkin@yandex.ru
Россия, Екатеринбург

Список литературы

  1. Mirth C.K., Shingleton A.W. Coordinating development: how do animals integrate plastic and robust developmental processes? // Front. Cell Dev. Biol. 2019. V. 7. Art. 8.
  2. Alves A.N., Oliveira M.M., Koyama T. et al. Ecdysone coordinates plastic growth with robust pattern in the developing wing // eLife. 2022. V. 11. Art. e72666.
  3. Nijhout H.F., Grunert L.W. The cellular and physiological mechanism of wing-body scaling in Manduca sexta // Science. 2010. V. 330. № 6011. P. 1693–1695.
  4. Chauhan N., Shrivastava N.K., Agrawal N., Shakarad M.N. Wing patterning in faster developing Drosophila is associated with high ecdysone titer and wingless expression // Mech. Dev. 2020. V. 163. Art. 103626.
  5. Mirth C.K., Saunders T.E., Amourda C. Growing up in a changing world: environmental regulation of development in insects // Annu. Rev. Entomol. 2021. V. 66. P. 81–99.
  6. McKenna K.Z., Tao D., Nijhout H.F. Exploring the role of insulin signaling in relative growth: a case study on wing-body scaling in Lepidoptera // Integr. Comp. Biol. 2019. V. 59. № 5. P. 1324–1337.
  7. Brakefield P.M., Frankino W.A. Polyphenisms in Lepidoptera: Multidisciplinary approaches to studies of evolution and development // Phenotypic plasticity of insects: mechanisms and consequences / Eds. Whitman D.W., Ananthakrishnan T. N. Enfield: Science Publ., 2009. P. 337–368.
  8. Simpson S.J., Sword G.A., Lo N. Polyphenism in insects // Curr. Biol. 2011. V. 21. № 18. P. R738–R749.
  9. Richard G., Jaquiéry J., Le Trionnaire G. Contribution of epigenetic mechanisms in the regulation of environmentally-induced polyphenism in insects // Insects. 2021. V. 12. № 7. Art. 649.
  10. Frazier M.R., Harrison J.F., Kirkton S.D., Roberts S.P. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology // J. Exp. Biol. 2008. V. 211. № 13. P. 2116–2122.
  11. Fraimout A., Jacquemart P., Villarroel B. et al. Phenotypic plasticity of Drosophila suzukii wing to developmental temperature: implications for flight // J. Exp. Biol. 2018. V. 221. № 13. Art. jeb166868.
  12. Rohner P.T., Roy J., Schäfer M.A. et al. Does thermal plasticity align with local adaptation? An interspecific comparison of wing morphology in sepsid flies // J. Evolution. Biol. 2019. V. 32. № 5. P. 463–475.
  13. Solensky M.J., Larkin E. Temperature-induced variation in larval coloration in Danaus plexippus (Lepidoptera: Nymphalidae) // Ann. Entomol. Soc. Am. 2003. V. 96. № 3. P. 211–216.
  14. Stoehr A.M., Goux H. Seasonal phenotypic plasticity of wing melanisation in the cabbage white butterfly, Pieris rapae L. (Lepidoptera: Pieridae) // Ecol. Entomol. 2008. V. 33. № 1. P. 137–143.
  15. Sourakov A. Temperature-dependent phenotypic plasticity in wing pattern of Utetheisa ornatrix bella (Erebidae, Arctiinae) // Trop. Lepid. Res. 2015. V. 25. № 1. P. 34–45.
  16. Шмальгаузен И.И. Факторы эволюции: теория стабилизирующего отбора. М.: Наука, 1968. 452 c.
  17. Vermeulen A.C. Elaborating chironomid deformities as bioindicators of toxic sediment stress: the potential application of mixture toxicity concepts // Ann. Zool. Fennici. 1995. V. 32. P. 265–285.
  18. Imasheva A.G., Loeschcke V., Zhivotovsky L.A., Lazebny O.E. Effects of extreme temperatures on phenotypic variation and developmental stability in Drosophila melanogaster and Drosophila buzzatii // Biol. J. Linn. Soc. 1997. V. 61. № 1. P. 117–126.
  19. Polak M., Tomkins J.L. Developmental instability as phenodeviance in a secondary sexual trait increases sharply with thermal stress // J. Evolution. Biol. 2012. V. 25. № 2. P. 277–287.
  20. Zhu X., Xu X., Zhou S. et al. Low temperature exposure (20оC) during the sealed brood stage induces abnormal venation of honey bee wings // J. Apicult. Res. 2018. V. 57. № 3. P. 458–465.
  21. Yablokov A.V., Eatin V. J., Pritikina L.N. Variability of wing venation of the dragonfly // Beitrage zur Entomologie. 1970. V. 5. № 6. P. 503–526.
  22. Орлов Л.М. Жилкование крыла златоглазки Chrysopa adspersa Wesm. (Chrysopidae, Neuroptera) как модель микроэволюционных исследований // Журн. общ. биол. 1975. Т. 35. № 6. С. 902–913.
  23. Фролов А.Н. Влияние характера питания на изменчивость жилкования крыла у бабочек кукурузного мотылька // Экология. 1983. Т. 14. №1. С. 87–88.
  24. Козлов М.В. Функциональная морфология крыльев и изменчивость их жилкования у низших чешуекрылых (Lepidoptera: Micropterigidae – Tischeriidae) // Журн. общ. биол. 1987. Т. 48. № 2. С. 238–247.
  25. Perfil’eva K.S. Wing venation anomalies in sexual individuals of ants (Hymenoptera, Formicidae) with different strategies of mating behavior // Entomol. Rev. 2000. V. 80. № 9. С. 1181–1188.
  26. Łopuch S., Tofilski A. The relationship between asymmetry, size and unusual venation in honey bees (Apis mellifera) // Bull. Entomol. Res. 2016. V. 106. № 3. P. 304–313.
  27. Eligül H., Koca A.Ö., Kandemir İ. Forewing deformations in Turkish honey bee populations // Uludag Bee Journal. 2017. V. 17. № 2. P. 72–81.
  28. Солонкин И.А., Захарова Е.Ю., Шкурихин А.О., Ослина Т.С. Классификация и закономерности проявления нарушений жилкования крыльев белянок (Lepidoptera: Pieridae) на примере боярышницы Aporia crataegi L. // Евразиатский энтомол. журн. 2017. Т. 16. № 6. С. 579–589.
  29. Gülmez Y. Teratology in the solitary wasp family Sphecidae (Insecta: Hymenoptera) // Biologia. 2019. V. 74. № 10. P. 1349–1357.
  30. Can İ. Wing venation abnormalities in the solitary wasp family Crabronidae (Insecta: Hymenoptera) // J. Entomol. Res. Soc. 2022. V. 24. № 2. P. 219–232.
  31. Ross K.G., Robertson J.L. Developmental stability, heterozygosity, and fitness in two introduced fire ants (Solenopsis invicta and S. richteri) and their hybrid // Heredity. 1990. V. 64. № 1. P. 93–103.
  32. Clarke G.M. Patterns of developmental stability of Chrysopa perla L. (Neuroptera: Chrysopidae) in response to environmental pollution // Environ. Entomol. 1993. V. 22. № 6. P. 1362–1366.
  33. Smith D.R., Crespi B.J., Bookstein F.L. Fluctuating asymmetry in the honey bee, Apis mellifera: effects of ploidy and hybridization // J. Evolution. Biol. 1997. V. 10. № 4. P. 551–574.
  34. Padró J., Carreira V., Corio C. et al. Host alkaloids differentially affect developmental stability and wing vein canalization in cactophilic Drosophila buzzatii // J. Evolution. Biol. 2014. V. 27. № 12. P. 2781–2797.
  35. Solonkin I.A., Zakharova E.Yu., Shkurikhin A.O. Wing venation abnormalities in the black-veined white Aporia crataegi L. (Lepidoptera, Pieridae): insight in terms of modern phenetics // Entomol. Rev. 2021. V. 101. № 6. P. 778–791.
  36. Tammaru T., Esperk T. Growth allometry of immature insects: larvae do not grow exponentially // Funct. Ecol. 2007. V. 21. № 6. P. 1099–1105.
  37. Grunert L.W., Clarke J.W., Ahuja C. et al. A quantitative analysis of growth and size regulation in Manduca sexta: the physiological basis of variation in size and age at metamorphosis // PlOS One. 2015. V. 10. № 5. Art. e0127988.
  38. Nijhout H.F., Cinderella M., Grunert L.W. The development of wing shape in Lepidoptera: mitotic density, not orientation, is the primary determinant of shape // Evol. Dev. 2014. V. 16. № 2. P. 68–77.
  39. Solonkin I.A., Shkurikhin A.O., Oslina T.S., Zakharova E.Y. Changes in the body size of black-veined white, Aporia crataegi (Lepidoptera: Pieridae), recorded in a natural population in response to different spring weather conditions and at different phases of an outbreak // Eur. J. Entomol. 2021. V. 118. P. 214–224.
  40. Куликов П.В., Золотарева Н.В., Подгаевская Е.Н. Эндемичные растения Урала во флоре Свердловской области. Екатеринбург: Гощицкий, 2013. 610 с.
  41. Rohlf F.J. TpsDig Version 2.32. 2021. URL: http://sbmorphometrics.org
  42. Rohlf F.J. TpsUtil Version 1.81. 2021. URL: http://sbmorphometrics.org
  43. Погода и климат. URL: http://www.pogodaiklimat.ru/monitor.php?id=28440
  44. Blunck H., Wilbert H. Der Baumweißling Aporia crataegi (L.) (Lep., Pieridae) und sein Massenwechsel // Zeitschrift für angewandte Entomologie. 1962. V. 50. № 1/4. P. 166–221.
  45. Тураев Н.С. Паразиты и их роль в подавлении массового размножения боярышницы // Труды Свердловского СХИ. 1964. Т. 11. C. 331–335.
  46. Надзор, учет и прогноз массовых размножений хвое- и листогрызущих насекомых в лесах СССР / Ред. Ильинский А.И., Тропин И.В. М.: Лесная промышленность, 1965. 524 с.
  47. Бабенко З.С. Насекомые-фитофаги плодовых и ягодных растений лесной зоны Приобья. Томск: Изд-во Томского ун-та, 1982. 270 с.
  48. Осипенко Т.И. Листогрызущие чешуекрылые-вредители яблони (листовертки, боярышница) и биологическое обоснование мер борьбы с ними в условиях Центральной степи Украины: Автореф. дис… канд. биол. наук. Умань, 1984. 15 с.
  49. Brooks M.E., Kristensen K., van Benthem K.J. et al. glmmTMB: balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling // The R Journal. 2017. V. 9. № 2. P. 378–400.
  50. Schielzeth H. Simple means to improve the interpretability of regression coefficients // Methods Ecol. Evol. 2010. V. 1. № 2. P. 103–113.
  51. Ver Hoef J.M., Boveng P.L. Quasi‐Poisson vs. negative binomial regression: how should we model overdispersed count data? // Ecology. 2007. V. 88. № 11. P. 2766–2772.
  52. Lindén A., Mäntyniemi S. Using the negative binomial distribution to model overdispersion in ecological count data // Ecology. 2011. V. 92. № 7. P. 1414–1421.
  53. Hartig F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.6. 2022. URL: https://CRAN.R-project.org/package=DHARMa
  54. Lenth R.V. Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.8. 2023. URL: https://CRAN.R-project.org/package=emmeans
  55. Fox J., Weisberg S. An R Companion to Applied Regression. 2019. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/
  56. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. 2023. URL: https://www.R-project.org/
  57. Nijhout H.F., Laub E., Grunert L.W. Hormonal control of growth in the wing imaginal disks of Junonia coenia: the relative contributions of insulin and ecdysone // Development. 2018. V. 145. № 6. Art. dev160101.
  58. Шкурихин А.О., Захарова Е.Ю., Ослина Т.С., Солонкин И.А. Изменчивость морфофизиологических признаков самцов и самок Aporia crataegi L. (Lepidoptera: Pieridae) в зависимости от времени вылета имаго // Экология. 2018. № 4. С. 325–330. [Shkurikhin A.O., Zakharova E.Y., Oslina T.S., Solonkin I.A. Variation in morphophysiological traits of male and female Aporia crataegi L. (Lepidoptera: Pieridae) depending on the timing of adult emergence // Russ. J. of Ecology. 2018. V. 49. № 4. P. 356–361]. doi: 10.1134/S1067413618040124
  59. Arendt J.D. Adaptive intrinsic growth rates: an integration across taxa // Quart. Rev. Biol. 1997. V. 72. № 2. P. 149–177.
  60. De Block M., Campero M., Stoks R. Developmental costs of rapid growth in a damselfly // Ecol. Entomol. 2008. V. 33. № 2. P. 313–318.
  61. Yata O. Comparative morphology of the pupal forewing tracheation in some Japanese species of the family Pieridae (Lepidoptera) // Kontyû. 1981. V. 49. № 2. P. 245–257.
  62. Fischer K., Karl I. Exploring plastic and genetic responses to temperature variation using copper butterflies // Clim. Res. 2010. V. 43. № 1/2. P. 17–30.
  63. Gibbs M., Wiklund C., Van Dyck H. Temperature, rainfall and butterfly morphology: does life history theory match the observed pattern? // Ecography. 2011. V. 34. № 2. P. 336–344.
  64. Wilson R.J., Brooks S.J., Fenberg P.B. The influence of ecological and life history factors on ectothermic temperature–size responses: Analysis of three Lycaenidae butterflies (Lepidoptera) // Ecol. Evol. 2019. V. 9. № 18. P. 10305–10316.
  65. Whitman D.W., Agrawal A.A. What is phenotypic plasticity and why is it important // Phenotypic plasticity of insects: mechanisms and consequences / Eds. Whitman D.W., Ananthakrishnan T. N. Enfield: Science Publ., 2009. P. 1–63.
  66. Stearns S.C., Kaiser M., Kawecki T.J. The differential genetic and environmental canalization of fitness components in Drosophila melanogaster // J. Evolution. Biol. 1995. V. 8. № 5. P. 539–557.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема расстановки меток и поиска нарушений жилкования на крыльях боярышницы. Черными точками обозначены границы анализируемых жилок, красными крестиками – места расстановки меток, арабскими цифрами – номера ячеек крыла. Прерывистыми линиями выделены жилки, исключенные из анализа. Строчными буквами обозначены отдельные участки жилок: a – радиальный ствол (R stem); b – дистальная часть радиального ствола (R1–М1+R(4+5)); c – жилка M2–М1+R(4+5); d – жилка М1+R(4+5); e – жилка R(4+5); f – кубитальный ствол (Cu stem); g – дистальная часть кубитального ствола (Cu1–M3).

Скачать (196KB)
3. Рис. 2. Основные типы нарушения жилкования крыльев боярышницы: а–в – дополнительные разветвления жилок (тип I): а – дополнительная ветвь направлена к переднему краю крыла, б – дополнительная ветвь направлена к заднему краю крыла, в – обе ветви разветвления развиты одинаково, среди них нельзя выделить основную и дополнительную; г – дополнительные жилки, расположенные внутри ячеек крыла (тип II); д – случаи редукции присутствующих в норме жилок (тип III); е – слияние присутствующих в норме жилок (тип IV). Прямоугольники указывают на местоположение соответствующих нарушений жилкования.

4. Рис. 3. Нарушения жилкования крыльев боярышницы, связанные с неполным срастанием медиальной жилки М1 и радиальной R(4+5) (тип V): а – жилкование крыльев белянок на стадии куколки [61]: жилка M1 (выделена красным) не срощена с жилкой R(4+5) и отходит от медиального ствола; б – нормальное жилкование имаго боярышницы: жилки M1 и R(4+5) образуют единую жилку M1+R(4+5) (ее границы обозначены черными точками); в–д – схематичные изображения нарушений жилкования, связанных с неполным срастанием жилок M1 и R(4+5); е–з – примеры соответствующих нарушений жилкования.

Скачать (630KB)
5. Рис. 4. Встречаемость нарушений жилкования крыльев боярышницы в зависимости от площади переднего крыла (а), температуры воздуха (б) и количества осадков (в) во время развития преимагинальных стадий весной. На двух нижних графиках размер кругов пропорционален доле особей с данным количеством нарушений жилкования в выборке за год. Самцы обозначены синим цветом, самки – красным.

Скачать (296KB)
6. Рис. 5. Регрессионные коэффициенты (± 95%-ные доверительные интервалы), характеризующие влияние площади переднего крыла (а), температуры воздуха (б) и количества осадков (в) во время постдиапаузного развития боярышницы на встречаемость отдельных вариантов нарушений жилкования крыльев. Названия вариантов нарушений жилкования: F – переднее крыло, H – заднее; номера ячеек и названия жилок приведены в соответствии с рис. 1. Римскими цифрами (I–V) обозначен тип нарушения жилкования, арабскими (1–3) – подтип. Самцы обозначены синим, самки – красным; * – регрессионные коэффициенты значимо (p < 0.05) отличаются от нуля с учетом поправки Бенджамина–Хохберга.

Скачать (298KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».