Interaction of a powerful hydrogen plasma flow with a supersonic gas jet and a tungsten target

Cover Page

Cite item

Full Text

Abstract

The results of a study of the interaction of a powerful flow of hydrogen plasma with a supersonic gas jet in front of a tungsten target are presented. Nitrogen or neon injected in front of the target surface provides a reliable method of shielding tungsten from direct exposure to hydrogen plasma. It has been experimentally shown that the resulting plasma of the gas jet is a powerful source of short-wave line radiation. Energy density absorbed by a tungsten target ≈25 J/cm2 is half the energy absorbed by tungsten during pulsed action of a hydrogen plasma flow without a gas jet ≈50 J/cm2. The maximum temperature achieved by the tungsten surface is ≈3700 K with the use of a gas jet and ≈5800 K without a gas jet. The presence of a gas jetscreen in front of the tungsten leads to the localization of evaporated tungsten near the target at distances of up to 1 cm from the surface.

About the authors

S. D. Lidzhigoriaev

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Author for correspondence.
Email: sandji@triniti.ru
Russian Federation, Troitsk, Moscow, 108840; Moscow, 141701

D. A. Burmistrov

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Power Engineering Institute

Email: sandji@triniti.ru
Russian Federation, Troitsk, Moscow, 108840; Moscow, 111250

V. V. Gavrilov

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research

Email: vvgavril@triniti.ru
Russian Federation, Troitsk, Moscow, 108840

V. A. Kostyushin

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research

Email: sandji@triniti.ru
Russian Federation, Troitsk, Moscow, 108840

I. M. Poznyak

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Email: sandji@triniti.ru
Russian Federation, Troitsk, Moscow, 108840; Moscow, 141701

A. V. Pushina

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Email: sandji@triniti.ru
Russian Federation, Troitsk, Moscow, 108840; Moscow, 141701

D. A. Toporkov

State Scientific Center of the Russian Federation Troitsk Institute for Innovation and Thermonuclear Research; National Research University Moscow Institute of Physics and Technology

Email: toporkov@triniti.ru
Russian Federation, Troitsk, Moscow, 108840; Moscow, 141701

References

  1. Toporkov D.A., Burmistrov D.A., Gavrilov V.V., Zhitlukhin A.M., Kostyushin V.A., Lidzhigoryaev S.D., Pushina A.V., Pikuz S. A., Ryazantsev S.N., Skobelev I.Yu. // Plasma Phys. Rep. 2023. V. 49. P. 1000.
  2. Skovorodin D.I., Pshenov A.A., Arakcheev A.S., Eksaeva E.A., Marenkov E.D., Krasheninnikov S.I. // Phys. Plasmas. 2016. V. 23. P. 022501.
  3. Kostyushin V.A., Poznyak I.M., Toporkov D.A., Burmistrov D.A., Zhuravlev K.V., Lidzhigoryaev S. D., Usmanov R.R., Tsybenko V. Yu., Nemchinov V.S. // Instruments Experimental Techniques. 2023. V. 66. P. 920.
  4. Житлухин А.М., Илюшин И.В., Сафронов В.М., Скворцов Ю.В. // Физика плазмы. 1982. Т. 8. С. 509.
  5. Лиджигоряев С.Д., Бурмистров Д.А., Гаврилов В.В., Костюшин В.А., Позняк И.М., Пушина А.В., Топорков Д.А. // ВАНТ. Сер. Термоядерный синтез. 2023. Т. 46. С. 63.
  6. Архипов Н.И., Васенин С.Г., Житлухин А.М., Половцев Н.А., Сафронов В.М., Топорков Д.А. // Приборы и техника эксперимента. 1998. № 1. С. 128.
  7. Волков Г.С., Лахтюшко Н.И., Терентьев О.В. // Приборы и техника эксперимента. 2010. № 5. С. 115.
  8. Prism Computational Sciences. Software tools for scientific research and commercial applications in the physical sciences and engineering. http://www.prism-cs.com
  9. Mutzke A., Bandelow G., Schneider R. // J. Nuclear Materials. 2015. V. 467. P. 413.
  10. Mikhailov V.S., Babenko P.Yu., Shergin A.P., Zinoviev A.N. // Plasma Phys. Rep. 2024. V. 50. P. 23.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).