THE DIAGNOSTIC COMPLEX AND EXPERIMENT CONTROL SYSTEM AT THE GDT FACILITY

Cover Page

Cite item

Full Text

Abstract

The Gas Dynamic Trap (GDT) facility is an open magnetic trap for plasma confinement. It is a variation of the Budker-Post mirror machine (probkotron), with the distance between the mirrors exceeding the characteristic path length of ions before scattering into the loss cone, and with a high mirror ratio. Under these conditions, the plasma particle confinement mechanism is similar to that of a collisionless gas in a vessel with a small opening, and the plasma confinement time depends linearly on its length and mirror ratio. These systems have potential for several applications in controlled nuclear fusion, the most immediate of which is the D-T neutron fusion source, capable of producing a neutron flux with a power density of several megawatts per square meter. This is required for the materials science research necessary for the design of the first wall of future fusion reactors. The experimental program of the GDT facility includes the study of kinetic and magnetohydrodynamic plasma instabilities, investigation of the behavior of sloshing ions, additional methods for heating and maintaining the material balance in the trap, and the study of the energy balance of the plasma. The paper describes in detail the GDT facility, its Diagnostic Complex, and control system, which is relevant today.

About the authors

E. I. Soldatkina

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Email: E.I.Soldatkina@inp.nsk.su
Novosibirsk, Russia

P. A. Bagryansky

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

E. D. Gospodchikov

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

P. V. Zubarev

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

S. V. Ivanenko

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

A. N. Kvashnin

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

O. A. Korobeynikova

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

L. V. Lubyako

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

V. V. Maximov

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

D. V. Moiseev

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

S. V. Murakhtin

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

A. K. Meyster

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

E. I. Pinzhenin

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

V. V. Prikhodko

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

E. A. Puryga

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

A. L. Solomakhin

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

A. D. Khilchenko

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

V. A. Khilchenko

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

T. A. Khusainov

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Nizhny Novgorod, Russia

A. G. Shalashov

Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: ags@ipfran.ru
Nizhny Novgorod, Russia

E. A. Shmigelsky

Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences

Novosibirsk, Russia

References

  1. Ivanov A.A., Prikhodko V.V. // Plasma Phys. Controlled Fusion. 2013. V. 55. P. 063001. https://doi.org/10.1088/0741-3335/55/6/063001
  2. Anikeev A.V., Bagryansky P.A., Ivanov A.A., Karpushov A.N., Korepanov S.A., Maximov V.V., Murakhtin S.V., Smirnov A.Y., Noack K., and Otto G. // Nuclear Fusion. 2000. V. 40. P. 753. https://doi.org/10.1088/0029-5515/40/4/301
  3. Simonen T.C., Anikeev A., Bagryansky P., Beklemishev A., Ivanov A., Lizunov A., Maximov V., Prikhodko V., and Tsidulko Y. // J. Fusion Energy. 2010. V. 29. P. 558. https://doi.org/10.1007/s10894-010-9342-7
  4. Хусаинов Т.А., Балакин А.А., Господчиков Е.Д., Соломахин А.Л., Шалашов А.Г. // Физика плазмы. 2024. Т. 50. С. 1299. https://doi.org/10.31857/S0367292124110028
  5. Shalashov A.G., Gospodchikov E.D., Smolyakova O.B., Bagryansky P.A., Malygin V.I., and Thumm M. // Phys. Plasmas. 2012. V. 19. https://doi.org/10.1063/1.4717757/596964
  6. Bagryansky P.A., Shalashov A.G., Gospodchikov E.D., Lizunov A.A., Maximov V.V., Prikhodko V.V., Soldatkina E.I., Solomakhin A.L., and Yakovlev D.V. // Phys. Rev. Lett. 2015. V. 114. P. 205001. https://doi.org/10.1103/PhysRevLett.114.205001
  7. Yakovlev D.V., Shalashov A.G., Gospodchikov E.D., Solomakhin A.L., Savkin V.Y., and Bagryansky P.A. // Nuclear Fusion. 2016. V. 57. P. 016033. https://doi.org/10.1088/0029-5515/57/1/016033
  8. Yakovlev D.V., Shalashov A.G., Gospodchikov E.D., Maximov V.V., Prikhodko V.V., Savkin V.Y., Soldatkina E.I., Solomakhin A.L., and Bagryansky P.A. // Nuclear Fusion. 2018. V. 58. P. 094001. https://doi.org/10.1088/1741-4326/AACB88
  9. Shmigelsky E.A., Lizunov A.A., Meyster A.K., Pinzhenin E.I., Solomakhin A.L., and Yakovlev D.V. // J. Plasma Phys. 2024. V. 90. P. 975900206. https://doi.org/10.1017/S0022377824000515
  10. Soldatkina E.I., Bagryansky P.A., and Solomakhin A.L. // Plasma Phys. Reports. 2008. V. 34. P. 259. https://doi.org/10.1134/S1063780X08040016
  11. Beklemishev A.D., Bagryansky P.A., Chaschin M.S., and Soldatkina E.I. // Fusion Sci. Technol. 2010. V. 57. P. 351. https://doi.org/10.13182/FST10-A9497
  12. Bagryansky P.A., Beklemishev A.D., and Soldatkina E.I. // Fusion Sci. Technol. 2007. V. 51. P. 340. https://doi.org/10.13182/fst07-a1395
  13. Bagryansky P.A., Bender E.D., Ivanov A.A., Karpushov A.N., Murachtin S.V., Noack K., Krahl S., and Collatz S. // J. Nuclear Mater. 1999. V. 265. P. 124. https://doi.org/10.1016/S0022-3115(98)00510-8
  14. Deichuli P.P., Davydenko V.I., Ivanov A.A., Korepanov S.A., Mishagin V.V., Sorokin A.V., Stupishin N.V., and Shulzhenko G.I. // Rev. Sci. Instrum. 2004. V. 75. P. 1816. https://doi.org/10.1063/1.1699465
  15. ROOT: analyzing petabytes of data, scientifically. [Электронный ресурс]. URL: https://root.cern/ (дата обращения: 07.07.2025).
  16. Киреенко А.В., Мурахтин С.В. // Вопросы атомной науки и техники. Серия Термоядерный синтез. 2008. № 1. С. 26.
  17. Yurov D.V., Prikhodko V.V., and Tsidulko Y.A. // Plasma Phys. Reports. 2016. V. 42. P. 210. https://doi.org/10.1134/S1063780X16030090
  18. Shmigelsky E.A., Meyster A.K., Chernoshtanov I.S., Lizunov A.A., Solomakhin A.L., and Yakovlev D.V. // J. Plasma Phys. 2024. V. 90. P. 905900605. https://doi.org/10.1017/S0022377824001399
  19. Skovorodin D.I., Zaytsev K.V., and Beklemishev A.D. // Phys. Plasmas. 2013. V. 20. https://doi.org/10.1063/1.4827265
  20. Шмигельский Е.А. // LII Междунар. (Звенигородская) конфер. по физике плазмы и управляемому термоядерному синтезу: сб. тез. докл. 2025. С. 69. https://doi.org/10.34854/ICPAF.52.2025.1.1.028
  21. Zaytsev K.V., Anikeev A.V., Bagryansky P.A., Donin A.S., Korobeinikova O.A., Korzhavina M.S., Kovalenko Y.V., Lizunov A.A., Maximov V.V., Pinzhenin E.I., Prikhodko V.V., Soldatkina E.I., Solomakhin A.L., Savkin V.Y., and Yakovlev D.V. // Physica Scripta. 2014. V. T161. https://doi.org/10.1088/0031-8949/2014/T161/014004
  22. Витязев В.В. Спектрально-корреляционный анализ равномерных временных рядов. С.-Пб.: Из-во С.-Петербургского университета, 2001.
  23. Bagryansky P.A., Anikeev A.V., Beklemishev A.D., Donin A.S., Ivanov A.A., Korzhavina M.S., Kovalenko Y.V., Kruglyakov E.P., Lizunov A.A., Maximov V.V., Murakhtin S.V., Prikhodko V.V., Pinzhenin E.I., Pushkareva A.N., Savkin V.Y., and Zaytsev K.V. // Fusion Sci. Technol. 2011. V. 59. P. 31. https://doi.org/10.13182/FST11-A11568
  24. Lizunov A.A., Den Hartog D.J., Donin A.S., Ivanov A.A., and Prikhodko V.V. // Rev. Sci. Instrum. 2011. V. 82. https://doi.org/10.1063/1.3624742/354021
  25. Lizunov A., Donin A., and Savkin V. // Rev. Sci. Instrum. 2013. V. 84. https://doi.org/10.1063/1.4817644
  26. Шмигельский Е., Лизунов А., Солдаткина Е.И., Приходько В.В., Соломахин А.Л., Пинженин Е.И., Мейстер А.К. // LI Междунар. (Звенигородская) конфер. по физике плазмы и управляемому термоядерному синтезу: сб. тез. докл. 2024. С. 113. https://doi.org/10.34854/ICPAF.51.2024.1.1.075
  27. Abdrashitov G.F., Abdrashitov A.G., Deichuli P.P., Donin A.S., Khilchenko A.D., Lizunov A.A., Moiseev D.V., Murakhtin S.V., Sorokin A.V., and Zubarev P.V. // Fusion Sci. Technol. 2011. V. 59. P. 280. https://doi.org/10.13182/FST11-A11635
  28. Davydenko V.I., Ivanov A.A. // Rev. Sci. Instrum. 2004. V. 75. P. 1809. https://doi.org/10.1063/1.1699461
  29. Korepanov S.A., Abdrashitov G.F., Beals D., Davydenko V.I., Deichuli P.P., Granetz R., Ivanov A.A., Kolmogorov V.V., Mishagin V.V., Puiatti M., Rowan B., Stupishin N.V., Shulzhenko G.I., and Valisa M. // Rev. Sci. Instrum. 2004. V. 75. P. 1829. https://doi.org/10.1063/1.1699513
  30. Belchenko Y.I., Davydenko V.I., Deichuli P.P., Emelev I.S., Ivanov A.A., Kolmogorov V.V., Konstantinov S.G., Krasnov A.A., Popov S.S., Sanin A.L., Sorokin A.V., Stupishin N.V., Shikhovtsev I.V., Kolmogorov A.V., Atlukhanov M.G., Abdrashitov G.F., Dranichnikov A.N., Kapitonov V.A., and Kondakov A.A. // Uspekhi Fiz. Nauk. 2018. V. 188. P. 595. https://doi.org/10.3367/ufnr.2018.02.038305
  31. Savkin V.Y., Lizunov A.A. // Rev. Sci. Instrum. 2017. V. 88. https://doi.org/10.1063/1.4995356
  32. Fiksel G., Hartog D.J. Den, Ivanov A.A., and Lizunov A.A. // Препринт ИЯФ СО РАН 2003-29.
  33. Приходько В.В., Аникеев А.В., Багрянский П.А., Лизунов А.А., Максимов В.В., Мурахтин С.В., Цидулько Ю.А. // Физика плазмы. 2005. Т. 31. С. 969.
  34. Yarnold G.D., Bolton H.C. // J. Sci. Instrum. 1949. V. 26. P. 38. https://doi.org/10.1088/0950-7671/26/2/303
  35. Pinzhenin E.I., Maximov V.V., and Chistokhin I.B. // Instruments Exp. Tech. 2019. V. 62. P. 185. https://doi.org/10.1134/S0020441219020131
  36. Lizunov A., Berbasova T., Khilchenko A., Kvashnin A., Puryga E., Sandomirsky A., and Zubarev P. // Rev. Sci. Instrum. 2023. V. 94. https://doi.org/10.1063/5.0123329
  37. Lizunov A., Berbassova T., Khilchenko A., Maximov V., Puryga E., and Zubarev P. // J. Instrum. 2019. V. 14. P. C07010. https://doi.org/10.1088/1748-0221/14/07/C07010
  38. Puryga E.A., Lizunov A.A., Ivanenko S.V., Khilchenko A.D., Kvashnin A.N., Zubarev P.V., and Moiseev D.V. // IEEE Trans. Plasma Sci. 2019. V. 47. P. 2883. https://doi.org/10.1109/TPS.2019.2910795
  39. Sheffield J. Plasma Scattering of Electromagnetic Radiation. Academic Press, 1975.
  40. Penney C.M., St. Peters R.L., and Lapp M. // J. Optical Soc. Am. 1974. V. 64. P. 712–716. https://doi.org/10.1364/JOSA.64.000712
  41. Пинженин Е.И., Максимов B.B. // Приборы и техника эксперимента. 2024. № 2. С. 53. https://doi.org/10.31857/S0032816224020078
  42. Soldatkina E.I., Pinzhenin E.I., Korobeynikova O.A., Maximov V.V., Yakovlev D.V., Solomakhin A.L., Savkin V.Y., Kolesnichenko K.S., Ivanov A.A., Trunev Y.A., Voskoboynikov R.V., Shulzhenko G.I., Annenkov V.V., Volchok E.P., Timofeev I.V., and Bagryansky P.A. // Nuclear Fusion. 2022. V. 62. P. 066034. https://doi.org/10.1088/1741-4326/AC3BE3
  43. Solomakhin A.L., Bagryanskii P.A., Voskoboinikov R.V., Zubarev P.V., Kvashnin A.N., Lizunov A.A., Maksimov V.V., and Khil’chenko A.D. // Instruments Exp. Tech. 2005. V. 48. P. 649. https://doi.org/10.1007/S10786-005-0116-9/ METRICS
  44. Ivanenko S.V., Solomakhin A.L., Zhiltsov N.S., Zubarev P.V., Kovalenko Y.V., Kurskiev G.S., Solokha V.V., Tkachenko E.E., Shulyatiev K.D., Puryga E.A., Khilchenko A.D., Minaev V.B., and Bagryansky P.A. // Probl. Atomic Sci. Technol. Ser. Thermonucl. Fusion. 2023. V. 46. P. 86. https://doi.org/10.21517/0202-3822-2023-46-1-86-94
  45. Лубяко Л.В., Шалашов А.Г., Архипцевс Ф.Ф., Геннеберг В.А., Яковлев Д.В., Соломахин А.Л. // Приборы и техника эксперимента. 2018. № 1. С. 78. https://doi.org/10.7868/S0032816218010226
  46. Shalashov A.G., Gospodchikov E.D., Khusainov T.A., Lubyako L.V., Smolyakova O.B., and Solomakhin A.L. // Plasma Phys. Control. Fusion. 2020. V. 62. P. 065010. https://doi.org/10.1088/1361-6587/AB83CC
  47. Shalashov A.G., Gospodchikov E.D., Lubyako L.V., Khusainov T.A., Shmigelsky E.A., Soldatkina E.I., and Solomakhin A.L. // Phys. Plasmas. 2024. V. 31. P. 122506. https://doi.org/10.1063/5.0234887/3328401
  48. Shalashov A.G., Gospodchikov E.D., Khusainov T.A., Lubyako L.V., Solomakhin A.L., and Viktorov M.E. // J. Instrum. 2021. V. 16. P. P07007. https://doi.org/10.1088/1748-0221/16/07/P07007
  49. Shalashov A.G., Gospodchikov E.D., Lubyako L.V., Khusainov T.A., Solomakhin A.L., and Viktorov M.E. // Radiophys. Quantum Electron. 2022. V. 65. P. 323. https://doi.org/10.1007/S11141-023-10216-4/ METRICS
  50. Shalashov A.G., Gospodchikov E.D., Khusainov T.A., Lubyako L.V., Solomakhin A.L., and Yakovlev D.V. // Phys. Plasmas. 2022. V. 29. https://doi.org/10.1063/5.0101751/2844860
  51. Shalashov A.G., Gospodchikov E.D., Khusainov T.A., and Solomakhin A.L. // Rev. Sci. Instrum. 2023. V. 94. https://doi.org/10.1063/5.0175160/2929487
  52. Коробейникова О.А., Мурахтин С.В. // XLVI Междунар. (Звенигородская) конфер. по физике плазмы и управляемому термоядерному синтезу. 2019. С. 73.
  53. Soldatkina E.I., Maximov V.V., Prikhodko V.V., Savkin V.Y., Skovorodin D.I., Yakovlev D.V., and Bagryansky P.A. // Nuclear Fusion. 2020. V. 60. P. 086009. https://doi.org/10.1088/1741-4326/AB95D2
  54. Soldatkina E.I., Meyster A.K., Yakovlev D.V., and Bagryansky P.A. // J. Plasma Phys. 2024. V. 90. P. 975900203. https://doi.org/10.1017/S0022377824000254
  55. Мейстер А.К., Солдаткина Е.И., Яковлев Д.В. // Сибирский физический журнал. 2023. Т. 18. С. 5. https://doi.org/10.25205/2541-9447-2023-18-1-5-13
  56. Borissenko Y., Lizunov A., Vasileva N., Khilchenko A., Moiseev D., and Zubarev P. // AIP Confer. Proc. 2016. V. 1771. https://doi.org/10.1063/1.4964197/699591
  57. Shepp L.A., Vardi Y. // IEEE Trans. Medical Imaging. 1982. V. 1. P. 113. https://doi.org/10.1109/TMI.1982.4307558
  58. Сковородин Д.., Черноштанов С.И., Амиров В.Х., Астрелин В.Т., Багрянский П.А., Беклемишев А.Д., Бурдаков А.В., Горбовский А.И., Котельников И.А., Магоммедов Э.М., Полосаткин С.В., Поступаев В.В., Приходько В.В., Савкин В.Я., Солдаткина Е.И., Соломахин А.Л., Сорокин А.В., Судников А.В., Христо М.С., Шиянков С.В., Яковлев Д.В., Щербаков В.И. // Физика плазмы. 2023. Т. 49. С. 831. https://doi.org/10.31857/S0367292123600322
  59. Crowley T.P. // IEEE Trans. Plasma Sci. 1994. V. 22. P. 291. https://doi.org/10.1109/27.310636

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).