EXCITATION OF LOWER HYBRID WAVES UPON INTERACTION OF SATURN’S MAGNETOSPHERE WITH DUSTY PLASMA

Cover Page

Cite item

Full Text

Abstract

Linear and nonlinear processes that are related to the presence of dust and can play an important role in plasma of the Saturn’s magnetosphere are analyzed. Excitation of the lower hybrid turbulence due to the interaction of heavy ions of the Saturn’s magnetosphere with dusty plasma is described. It is demonstrated that the lower hybrid turbulence can be driven in entire region where plasma of the Saturn’s magnetosphere interacts with the charged dust. The effective collision frequency that characterizes an anomalous loss of momentum by heavy ions upon their interaction with the lower hybrid waves, along with the electric fields appearing in the system, are found. It is noted that the fields induced due to the development of the lower hybrid turbulence can influence the pattern of the electric field in the Saturn’s magnetosphere, including the field at the Enceladus orbit, despite the fact that the amplitude of the electric fields induced at the Enceladus orbit in the presence of the lower hybrid turbulence is lower than the magnitude of the electric fields at the Enceladus surface.

About the authors

D. V. Shokhrin

National Research University Higher School of Economics

Moscow, Russia

S. I. Popel

Space Research Institute, Russian Academy of Sciences

Email: popel@cosmos.ru
Moscow, Russia

S. I. Kopnin

Space Research Institute, Russian Academy of Sciences

Moscow, Russia

References

  1. Yaroshenko V.V., Ratynskaia S., Olson J., Brenning N., Wahlund J.-E., Morooka M., Kurth W.S., Gurnett D.A., Morfill G.E. // Planet. Space Sci. 2009. V. 57. P. 1807.
  2. Farrell W.M., Kurth W.S., Tokar R.L., Wahlund J.-E., Gurnett D.A., Wang Z., MacDowall R.J., Morooka M.W., Johnson R.E., Waite Jr. J.H. // Geophys. Res. Lett. 2010. V. 37. P. L20202.
  3. Morooka M.W., Wahlund J.-E., Eriksson A.I., Farrell W.M., Gurnett D.A., Kurth W.S., Persoon A.M., Shafiq M., Andre M., Holmberg M.K.G. // J. Geophys. Res. 2011. V. 116. P. A12221.
  4. Engelhardt I.A.D., Wahlund J.-E., Andrews D.J., Eriksson A.I., Ye S., Kurth W.S., Gurnett D.A., Morooka M.W., Farrell W.M., Dougherty M.K. // Planet. Space Sci. 2015. V. 117. P. 453.
  5. Williams J. D., Chen L.-J., Kurth W.S., Gurnett D.A., Dougherty M.K. // Geophys. Res. Lett. 2006. V. 33. P. L06103. https://doi.org/10.1029/2005GL024532
  6. Kim K., Edberg N.J.T., Modolo R., Morooka M., Wilson R.J., Coates A.J., Wellbrock A., Wahlund J.-E., Vigren E., Sulaiman A., Bertucci C., Desai R., Regoli L. // J. Geophys. Res.: Planets. 2025. V. 130. P. e2024JE008802. https://doi.org/10.1029/2024JE008802
  7. Копнин С.И., Косарев И.Н., Попель С.И., Ю М. // Физика плазмы. 2005. Т. 31. С. 224.
  8. Popel S.I., Morfill G.E., Shukla P.K., Thomas H. // J. Plasma Phys. 2013. V. 79. P. 1071.
  9. Морозова Т.И., Копнин С.И., Попель С.И. // Физика плазмы. 2015. Т. 41. С. 867.
  10. Попель С.И., Морозова Т.И. // Физика плазмы. 2017. Т. 43. С. 474.
  11. Popel S.I., Kassem A.I., Izvekova Y.N., Zelenyi L.M. // Phys. Lett. A. 2020. V. 384. P. 126627. https://doi.org/10.1016/j.physleta.2020.126627
  12. Извекова Ю.Н., Резниченко Ю.С., Попель С.И. // Физика плазмы. 2020. Т. 46. С. 1119.
  13. Извекова Ю.Н., Попель С.И., Голубь А.П. // Физика плазмы. 2023. Т. 49. С. 695.
  14. Tokar R.L., Johnson R.E., Hill T.W., Pontius D.H., Kurth W.S., Crary F.J., Young D.T., Thomsen M.F., Reisenfeld D.B., Coates A.J., Lewis G.R., Sittler E.C., Gurnett D.A. // Science. 2006. V. 31. № 5766. P. 1409.
  15. Sittler Jr. E.C., Ogilvie K.W., Scudde J.D. // J. Geophys. Res. 1983. V. 88. № A11. P. 8847.
  16. Barbosa D.D., Kurth W.S. // J. Geophys. Res. 1993. V. 98. № A6. P. 9351.
  17. Schippers P., Blanc M., Andre N., Dandouras I., Lewis G.R., Gilbert L.K., Persoon A.M., Krupp N., Gurnett D.A., Coates A.J., Krimigis S.M., Young D.T., Dougherty M.K. // J. Geophys. Res. 2008. V. 113. P. A07208.
  18. Rymer A.M., Mauk B.H., Hill T.W., Paranicas C., Andre N., Sittler Jr. E.C., Mitchell D.G., Smith H.T., Johnson R.E., Coates A.J., Young D.T., Bolton S.J., Thomsen M.F., Dougherty M.K. // J. Geophys. Res. 2007. V. 112. P. A02201.
  19. Richardson J.D. // Geophys. Res. Lett. 1995. V. 22. No 10. P. 1177.
  20. Richardson J.D., Sittler Jr. E.C. // J. Geophys. Res. 1990. V. 95. № А8. P. 12.019.
  21. Шохрин Д.В., Копнин С.И., Попель С.И. // Письма в ЖЭТФ. 2024. Т. 119. С. 419.
  22. Buneman O. // Phys. Rev. 1959. V. 115. P. 603.
  23. Popel S.I., Vladimirov S.V., Tsytovich V.N. // Phys. Rep. 1995. V. 259. P. 327.
  24. Tsytovich V.N. Lectures on Non-linear Plasma Kinetics. Berlin: Springer-Verlag, 1995.
  25. Shokhrin D.V., Kopnin S.I., Popel S.I. // Plasma Phys. Rep. 2025. V. 51. P. 732.
  26. Галеев А.А., Сагдеев Р.З. // Вопросы теории плазмы. Вып. 7 / Под ред. М.А. Леонтовича, М.: Атом-издат, 1973. С. 3.
  27. Popel S.I., Tsytovich V.N., Vladimirov S.V. // Phys. Plasmas. 1994. V. 1. P. 2176.
  28. Vladimirov S.V., Tsytovich V.N., Popel S.I., Khakimov F.Kh. // Modulational Interactions in Plasmas. Dordrecht–Boston–London: Kluwer Academic Publishers, 1995.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).