CALCULATING ELECTRON SWARM PARAMETERS IN ARGON IN STRONG ELECTRIC FIELDS
- Authors: Bochkov E.I.1
-
Affiliations:
- Russian Federal Nuclear Center—All-Russian Scientific Research Institute of Technical Physics
- Issue: Vol 51, No 9 (2025)
- Pages: 996-1010
- Section: ELEMENTARY PROCESSES IN PLASMA
- URL: https://journal-vniispk.ru/0367-2921/article/view/382348
- DOI: https://doi.org/10.31857/S0367292125090061
- ID: 382348
Cite item
Full Text
Abstract
The dependences of the kinetic and transport coefficients of electrons in argon are calculated using the Monte Carlo method over a wide range of reduced field strengths E/N from 30 to 2000 Td. The obtained results are compared with experimental data available in the literature. It is shown that for argon, the drift-diffusion approximation for calculating the spatiotemporal evolution of the electron density becomes inapplicable in fields larger than ≈ 1000 Td. The results of numerical calculations of electron transport in argon in uniform and inhomogeneous electric fields performed using the Monte Carlo method are also compared with the results of calculations using a previously developed multigroup model.
About the authors
E. I. Bochkov
Russian Federal Nuclear Center—All-Russian Scientific Research Institute of Technical Physics
Email: e_i_bochkov@mail.ru
Sarov, Russia
References
- Голант В.Е., Жилинский А.П., Сахаров И.Е. Основы физики плазмы. М.: Атомиздат, 1977.
- Sakai Y., Tagashira H., and Sakamoto S. // J. Phys. D: Appl. Phys. 1997. V. 10. P. 1035.
- Бочков Е.И., Бабич Л.П. // Физика плазмы. 2022. Т. 48. C. 276.
- Бочков Е.И. // Физика плазмы. 2023. Т. 49. C. 381.
- Бочков Е.И. // Физика плазмы. 2024. Т. 50. C. 597.
- Бочков Е.И. // Физика плазмы. 2025. Т. 51. С. 320.
- Бочков Е.И., Бабич Л.П., Куцык И.М. // Физика плазмы. 2021 Т. 47. С. 935.
- Dasgupta A., Bhatia A.K. // Phys Rev. A. 1985. V. 32. P. 3335.
- Fon W.C., Berrington K.A., Burke P.G., and Hibbert A. // J. Phys. B: At. Mol. Phys. 1983. V. 16. P. 307.
- Salvat F., Jablonski A., and Powell C.J. // Computer Phys. Communic. 2005. V. 165. P. 157.
- Rejoub R., Lindsay B. G., and Stebbings R. F. // Phys. Rev. A. 2002. V. 65. P. 042713.
- Schram B.L., de Heer F.J., and van der Wiel M.J. Kistemaker J. // Physica. 1965. V. 31. P. 94.
- https://nl.lxcat.net.
- Raju G.G. Gaseous Electronics. Tables, Atoms, and Molecules. N.Y.: CRC Press. 2012.
- Opal C.B., Peterson W.K., and Beaty E.C. // J. Chem. Phys. 1971. V. 55(8). P. 4100.
- Brent R.Y., Khako M.A. // Phys. Rev. A. 2011. V. 83. 042712.
- Tahira S., Oda N. // J. Phys. Soc. Japan. 1973. V. 35(2). P. 582.
- Hagelaar G.J.M., Pitchford L.C. // Plasma Sourc. Sci. Techn. 2005. V. 14. P. 722.
- Бочков Е.И. // Физика плазмы. 2023. Т. 49. С. 1151.
- Kucukarpaci H.N., Lucas J. // J. Phys. D: Appl. Phys. 1981. V. 14. 2001.
- Al-Amin S.A.J., Lucas J. // J. Phys. D: Appl. Phys. 1987. V. 20. P. 1590.
- Kruithof A.A. // Physica. 1940. V. 7(6). P. 519.
- Davies D.E., Milne J.G.C. // British J. Appl. Phys. 1959. V. 10. P. 301.
- Golden D.E., Fisher L.H. // Phys. Rev. 1961. V. 123. P. 1079.
- Pitchford L.C., Alves L.L., Bartschat K., Biagi S.F., Bordage M.C., Phelps A.V., Ferreira C.M., Hagelaar G.J.M., Morgan W.L., Pancheshnyi S., Puech V., Stauffer A., and Zatsarinny O. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 334001.
- Makabe T., Goto T., and Mori T. // J. Phys. B: Atom. Molec. Phys. 1977. V. 10. P. 1781.
- Losee J.R., Burch D.S. // Phys. Rev. A. 1972. V. 6. P. 1652.
- Bochkov E.I. // Phys. Plasmas. 2024. V. 31. P. 103503.
- Райзер Ю.П. Физика газового разряда. М.: Наука, 1992.
Supplementary files

