MODEL OF CURRENT FORMATION AT THE INITIAL STAGE OF THE RETURN STROKE OF SPARK DISCHARGE

Cover Page

Cite item

Full Text

Abstract

The experimental studies of the break-through phase of the leader spark discharge in 1.3 m gap are presented. A numerical model is developed that describes the parameters of streamer zone and evolution of leader current during the break-through phase. The dependence of the leader velocity in the break-through phase on the magnitude of the reduced electric field E/N in the streamer zone is obtained. These dependences are compared with the measurement data; it is shown that the leader velocity VL ∼ (E/N)3/2. The agreement between the calculated and meas-ured time profiles of the leader current pulses in the breakthrough phase was obtained. It is shown that the main reason for the sharp increase in current at times of 1–2 µs is the increase in the reduced electric field in the streamer zone, associated with a decrease in the length of this zone as a result of the convergence of the leader heads. The field growth leads to an increase in the streamer velocity in the streamer zone, an increase in the leader current and the leader velocity.

About the authors

N. A. Popov

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: npopov.msu@gmail.com
Moscow, Russia

N. A. Bogatov

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

Yu. V. Shlyugaev

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

A. N. Bocharov

Joint Institute for High Temperatures, Russian Academy of Sciences

Moscow, Russia

E. A. Mareev

Gaponov-Grekhov Institute of Applied Physics, Russian Academy of Sciences

Nizhny Novgorod, Russia

References

  1. Базелян Э.М., Райзер Ю.П. Физика молнии и молниезащиты. М. Физматлит. 2001.
  2. Базелян Э.М., Райзер Ю.П. Искровой разряд. Изд-во МФТИ. 1997.
  3. Rakov V.A., Uman M.A. Lightning: Physics and effects. Cambridge University Press. 2003.
  4. Базелян Э.М., Чичинский М.И. // Физика плазмы. 2009. Т. 35. С. 861–868.
  5. Rakov V.A., Tran M.D. // Electric Power Systems Research. 2019. V. 173. P. 122–134. https://doi.org/10.1016/j.epsr.2019.03.018
  6. Jiang R., Srivastava A., Qie X., Yuan S., Zhang H., Sun Z. et al. // Geophysical Research Letters. 2021. 48. e2020GL091608. https://doi.org/10.1029/2020GL091608
  7. Allen N.L., Mikropoulos P.N. // J. Phys. D: Appl. Phys. 1999. V. 32 P. 913–919.
  8. Попов Н.А. // Физика плазмы. 2009. Т. 35. № 9. С. 852–860.
  9. Zhao X., Liu L., Wang X., Liu L., Qu L., Jia L., He J., Luo B., and Chen H. // Geophys. Res. Lett. 2019. V. 46. P. 512–518.
  10. Bogatov N.A., Syssoev V.S., Sukharevsky D.I., Orlov A.I., Rakov V.A., and Mareev E.A. // J. Geophys. Res. Atmospheres. 2022. V. 127. e2021JD035870.
  11. Les Renardieres Group. Negative discharges in long air gaps at Les Renardieres, 1978 results. Electra. 1981. V. 74. P. 67–216.
  12. Tanaka S., Sunabe K.-Y., and Goda Y. // Electr. Eng. Jpn. 2003. V. 144(3). P. 8–16.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).