ELEMENTARY CHEMICAL REACTIONS ON THE SiO2 SURFACE IN FLUOROCARBON PLASMA

Cover Page

Cite item

Full Text

Abstract

Using DFT and DPLNO-CCSD(T) quantum chemistry methods, thresholds for elementary reactions occurring during atomic-layer etching of SiO2 in fluorocarbon plasma, as well as binding energies of key structures and adsorption energies of CF2 and F on the SiO2 surface were calculated. Calculations were made for two proposed etching mechanisms: at the SiO2∖CxFy interface layer and through the formation of free F atoms in the fluorocarbon film. Calculations show that in the first case, the reaction is limited by the removal of reaction products, and in the second case, by the cleavage of C–F bonds in the fluorocarbon film under ion bombardment. In practice, the joint implementation of both mechanisms is possible. The diffusion of fluorine atoms across the CxFy film does not limit the process.

About the authors

I. I. Ziganshin

Skobel’tsyn Institute of Nuclear Physics, Moscow State University; Moscow State University

Email: ilyaziganshin@gmail.com
Physics Faculty Moscow, Russia; Moscow, Russia

D. V. Lopaeva

Skobel’tsyn Institute of Nuclear Physics, Moscow State University

Moscow, Russia

A. T. Rakhomov

Skobel’tsyn Institute of Nuclear Physics, Moscow State University; Moscow State University

Physics Faculty Moscow, Russia; Moscow, Russia

References

  1. Haziq M., Falina S., Manaf A.A., Kawarada H., and Syamsul M. 2022: A Review Micromachines (Basel) 13.
  2. Kanarik K.J., Lill T., Hudson E.A., Sriraman S., Tan S., Marks J., Vahedi V., and Gottscho R.A. // Journal of Vacuum Science & Technology A. 2015. V. 33. P. 020802.
  3. George S.M. Atomic Layer Deposition: An Overview // Chem. Rev. 2010. V. 110. P. 111–31.
  4. Faraz T., Verstappen Y.G.P., Verheijen M.A., Chittock N.J., Lopez J.E., Heijdra E., van Gennip W.J.H., Kessels W.M.M., and Mackus A.J.M. // J. Appl. Phys. 2020. V. 128. P. 213301.
  5. Green M.L., Gusev E.P., Degraeve R., and Garfunkel E.L. // J. Appl. Phys. 2001. V. 90. P. 2057–121.
  6. Standaert T.E.F.M., Hedlund C., Joseph E.A., Oehrlein G.S., and Dalton T.J. // Journal of Vacuum Science & Technology A. 2003. V. 22. P. 53–60.
  7. Metzler D., Bruce R.L., Engelmann S., Joseph E.A., and Oehrlein G.S. // Journal of Vacuum Science & Technology A. 2013. V. 32. P. 020603.
  8. Hidayat R., Khumaini K., Kim H.-L., Chowdhury T., Mayangsari T.R., Cho S., Cho B., Park S., Jung J., and Lee W.-J. // Journal of Vacuum Science & Technology A. 2023. V. 41. P. 032604.
  9. Jung J.H., Oh H., and Shong B. // Selective Atomic Layer Etching (ALE) Coatings. 2023. V. 13.
  10. Rauf S., Sparks T., Ventzek P.L.G., Smirnov V.V., Stengach A.V., Gaynullin K.G., and Pavlovsky V.A. // J. Appl. Phys 2007. V. 101. P. 033308.
  11. Krüger F., Zhang D., Luan P., Park M., Metz A., and Kushner M.J. // Journal of Vacuum Science & Technology A. 2024. V. 42. P. 043008.
  12. Huard C.M., Sriraman S., Paterson A., and Kushner M.J. // Journal of Vacuum Science & Technology A. 2018. V. 36. P. 06B101.
  13. Huang S., Huard C., Shim S., Nam S.K., Song I.-C., Lu S., and Kushner M.J. // Journal of Vacuum Science & Technology A. 2019. V. 37. P. 031304.
  14. Ziegler J.F., Ziegler M.D., and Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. P. 1818–23.
  15. Neese F. // WIREs Computational Molecular Science. 2025. V. 15. P. e70019.
  16. Pritchard B.P., Altarawy D., Didier B., Gibson T.D., and Windus T.L. // J. Chem. Inf. Model. 2019. V. 59. P. 4814–20.
  17. Burke K. and Wagner L.O. // J. Quantum. Chem. 2013. V. 113. P. 96–101.
  18. Grimme S., Brandenburg J.G., Bannwarth C., and Hansen A. // J. Chem. Phys. 2005. V. 143. P. 054107.
  19. Bursch M., Mewes J.-M., Hansen A., and Grimme S. // Angewandte Chemie International Edition. 2022. V. 61. P. e202205735.
  20. Saitow M., Becker U., Riplinger C., Valeev E.F., and Neese F. // Journal of Chemical Physics. 2017. V. 146.
  21. Riplinger C., Sandhoefer B., Hansen A., and Neese F. // Journal of Chemical Physics. 2013. V. 139.
  22. Sandler I., Chen J., Taylor M., Sharma S., and Ho J. // J. Phys. Chem. A. 2021. V. 125. P. 1553–63.
  23. Feller D. and Peterson K.A. // J. Chem. Phys. 2007. V. 126. P. 114105.
  24. Ramabhadran R. and Raghavachari K. // J. Comput. Chem. 2015. V. 37.
  25. Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., and Hutchison G.R. // J. Cheminform. 2012. V. 4. P. 17.
  26. Ziganshin I.I., Galiullin K.R., Lopaev D.V., Kirillov E.A., and Rakhimov A.T. // Plasma Physics Reports. 2025. V. 51. P. 504–12.
  27. Butera V. // Physical Chemistry Chemical Physics. 2024. V. 26. P. 7950–70.
  28. Truhlar D.G. and Klippenstein S.J. // Current Status of Transition-State Theory. 1996.
  29. Saju A., Gunasekera P.S., Morgante P., MacMillan S.N., Autschbach J., and Lacy D.C. // J. Am. Chem. Soc. 2023. V. 145. P. 13384–91.
  30. Puziy A.M., Matynia T., Gawdzik B., and Poddubnaya O.I. Use of CONTIN for Calculation of Adsorption Energy Distribution // Langmuir. 1999. V. 15. P. 6016–25.
  31. Barone M.E. and Graves D.B. // J. Appl. Phys. 1995. V. 78. P. 6604–15.
  32. Tsutsumi T., Kondo H., Hori M., Zaitsu M., Kobayashi A., Nozawa T., and Kobayashi N. // Journal of Vacuum Science & Technology A. 2016. V. 35. P. 01A103.
  33. Liu H., Kaya H., Lin Y.-T., Ogrinc A., and Kim S.H. // Journal of the American Ceramic Society. 2022. V. 105. P. 2355–84.
  34. Marinov D., Teixeira C., and Guerra V. // Plasma Processes and Polymers. 2017. V. 14.
  35. Macko P., Veis P., and Cernogora G. // Plasma Sources Sci Techno.l 2004. V. 13. P. 251–62.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).