STUDY OF THE MAIN COMPONENTS OF TOKAMAK PLASMA TURBULENCE

Cover Page

Cite item

Full Text

Abstract

This work reviews the current state of research on the three main components of the turbulence spectrum observed in modern tokamaks. These components differ in frequency range and correlation properties, have relatively wide frequency intervals, and sizes larger than the ion Larmor radius. These are broadband (BB), quasi-coherent (QC), and stochastic low-frequency (SLF) fluctuations. BB fluctuations have the broadest frequency range, from 0 to 200–400 kHz, and make the main contribution to the total amplitude of density fluctuations. The characteristic BB sizes are close to those predicted by theory for the ion temperature gradient (ITG) and trapped electron mode (TEM) instabilities. BB are the least correlated fluctuations; in the T-10 tokamak plasma (R/a = 1.5/0.3 m), their typical radial and poloidal correlation lengths are approximately 1 and 2 cm, respectively, while the correlation length along the magnetic field line is less than 2.5 m. Quasi-coherent fluctuations (QC) are manifested as local maxima in the frequency spectra of density oscillations; however, they are most clearly visible in the coherence spectra, since they have radial and poloidal correlation lengths significantly longer than BB. In the T-10 tokamak plasma, correlations along the magnetic field line over a length of up to 10 m were observed for QC modes. Two types of such fluctuations were observed at T-10: low-frequency (LFQC) and high-frequency (HFQC). The characteristic poloidal sizes and dependences on discharge parameters in the T-10 experiments show that the properties of LFQC and HFQC are close to those of ITG and TEM, respectively. The poloidal rotation of QC coincides with the drift [E×B] rotation in magnitude and direction. A relation between the characteristics of these modes and the discharge parameters is demonstrated with a change in density. The magnetic component in QC was demonstrated at T-10 and DIII-D. Gyrokinetic simulation of these experiments showed that the properties of QC are close to the micro-tearing mode (MTM). Additional evidence for the MTM nature of QC is the strong dependence of their spectra on the current profile, the discrete mode structure, and the absence of QC in stellarator plasma. Stochastic low-frequency fluctuations (SLF), excited in the range from 0 to 70 kHz, are the least studied. In the T-10 tokamak, plasma on the side of a low magnetic field, these fluctuations can rotate in the direction opposite to QC. SLFs are uncorrelated along the magnetic field line at the LFS, but correlated at the HFS. SLF fluctuations have a magnetic component. Density and potential fluctuations have different radial and poloidal sizes and are uncorrelated with each other. This suggests the existence of two independent types of fluctuations in the SLF frequency domain. Experiments at DIII-D, by comparing spectra in the L, I, and H modes, showed that fluctuations in the SLF region (up to 70 kHz) can be associated with particle transport, while high-frequency fluctuations, such as QCM and BB, can be associated with heat transport.

About the authors

V. A Vershkov

National Research Center "Kurchatov Institute"

Email: Vershkov_VA@nrcki.ru
Moscow, Russia

A. V Mel'nikov

National Research Center "Kurchatov Institute"; National Nuclear University MEPhI; Moscow Institute of Physics and Technology (State University)

Moscow, Russia; Moscow, Russia; Dolgoprudnyi, Moscow region, Russia

L. G Eliseev

National Research Center "Kurchatov Institute"

Moscow, Russia

References

  1. ITER, http://www.iter.org/
  2. Biel W., Ariola M., Bolshakova I., Brunner K.J., Cecconello M., Duran I., Franke Th., Giacomelli L., Giannone L., Janky F. et al. // Fusion Eng. Design. 2022. V. 179. P. 113122. https://doi.org/10.1016/j.fusengdes.2022.113122
  3. Wan Y., Li J., Liu Y., Wang X., Chan V., Chen Ch., Duan X., Fu P., Gao X., Fenget K. et al. // Nuclear Fusion. 2017. V. 57. P. 102009. https://doi.org/10.1088/1741-4326/aa686a
  4. Creely A.J., Greenwald M.J., Ballinger S.B., Brunner D., Canik J., Doody J., Ful ¨ op T., Garnier D.T., ¨ Granetz R., Gray T.K. et al. // J. Plasma Phys. 2020. V. 86. P. 865860502. https://doi.org/10.1017/S0022377820001257
  5. Lawson J.D. // Proc. Phys. Society. 1957. V. 70. P. 6. https://doi.org/10.1088/0370-1301/70/1/303
  6. Галеев А.А., Сагдеев Р.З. // Вопросы теории плазмы. Вып. 7 / Ред. М.А. Леонтович. М.: Атомиздат, 1973.
  7. Gorbunov E.P., Razumova K.A. // Atomic energy. 1963. V. 15. P. 363.
  8. Рудаков Л.И., Сагдеев Р.З. // ЖЭТФ. 1961. Т. 37. С. 1397.
  9. Кадомцев Б.Б. // Письма ЖЭТФ. 1966. Т. 4. С. 15.
  10. Coppi B., Rewoldt G. // Phys. Rev. Lett. 1974. V. 33. P. 1329.
  11. Horton W., Hong B.G., and Tang W.M. // Phys. Fluids. 1988. V. 31. P. 2971.
  12. Connor J., Cowley S., and Hastie R. // Plasma Phys. Control. Fusion. 1990. V. 32. P. 799.
  13. Staebler G., Bourdelle C., Citrin J., and Waltz R. // Nucl. Fusion. 2024. V. 64. P. 103001. https://doi.org/10.1088/1741-4326/ad6ba5
  14. Diamond P.H., Itoh S.-I., Itoh K., and Hahm T.S. // Plasma Phys. Control. Fusion. 2005. V. 47. P. R35. https://doi.org/10.1088/0741-3335/47/5/R01
  15. Ida K. // Rev. Modern Plasma Phys. 2025. V. 9. P. 8. https://doi.org/10.1007/s41614-025-00186-7
  16. Maeyama S., Howard N.T., Citrin J., Watanabe T.-H., and Tokuzawa T. // Nuclear Fusion. 2024. V. 64. P. 112007. https://doi.org/10.1088/1741-4326/ad34e1
  17. Eliseev L.G., Ivanov N.V., Kakurin A.M., Melnikov A.V., and Perfilov S.V. // Phys. Plasmas. 2015. V. 22. P. 052504. https://doi.org/10.1063/1.4921646
  18. Melnikov A.V., Eliseev L.G., Gudozhnik A.V., Lysenko S.E., Mavrin V.A., Perfilov S.V., Zimeleva L.G., Ufimtsev M.V., Krupnik L.I., and Schoch P.M. // Czechoslovak J. Phys. 2005. V. 55. P. 349. https://doi.org/10.1007/s10582-005-0046-6
  19. Melnikov A.V., Eliseev L.G., Lysenko S.E., Mavrin V.A., Perfilov S.V., Ascasibar E., Hidalgo C., Jimenez-G ´ omez R., L ´ opez-Fraguas A., De ´ Pablos J.L. et al. // Nuclear Fusion. 2012. V. 52. P. 123004.
  20. Cripwell P., Costley A.E., Hubbard A.E. // Proceed. 16th European Physical Soc. Confer. on Plasma Physics and Controlled Fusion, Venice, 1989. European Physical Soc., Petit-Lancy, 1989. V. 1. P. 75.
  21. Vershkov V.A., Shelukhin D.A., Soldatov S.V., Urazbaev A.O., Grashin S.A., Eliseev L.G., Melnikov A.V. and the T-10 team // Nuclear Fusion. 2005. V. 45. P. S203. https://doi.org/10.1088/0029-5515/45/10/S17
  22. Melnikov A.V., Krupnik L.I., Eliseev L.G., Barcala J.M., Bravo A., Chmyga A.A., Deshko G.N., Drabinskij M.A., Hidalgo C., Khabanov P.O. et al. // Nuclear Fusion. 2017. V. 57. P. 072004. https://doi.org/10.1088/1741-4326/aa5382
  23. Melnikov A.V., Drabinskiy M.A., Eliseev L.G., Khabanov P.O., Kharchev N.K., Krupnik L.I., De Pablos J.L., Kozachek A.S., Lysenko S.E., Molinero A. et al. // Fusion Eng. Design 2019. V. 146. P. 850. https://doi.org/10.1016/j.fusengdes.2019.01.096
  24. Melnikov A.V., Eliseev L.G., Jimenez-G´omez R., As´casibar E., Hidalgo C., Chmyga A.A., Komarov A.D., Kozachok A.S., Krasilnikov I.A., Khrebtov S.M. et al. // Nuclear Fusion. 2010. V. 50. P. 084023.
  25. Luhmann N.C., Bindslev H., Park H., Sаnchez J., ´Taylor G., and Yu C.X. // Fusion Sci. Techn. 2008. V. 53. P. 335. https://doi.org/10.13182/FST08-A1675
  26. Paul S.F., Fonk R.J. // Rev. Sci. Instrum. 1990. V. 61. P. 3496. https://doi.org/10.1063/1.1141557
  27. Zweben S.J., Maqueda R.J., Stotler D.P., Keesee A., Boedo J., Bush C.E., Kaye S.M., LeBlanc B., Lowrance J.L., Mastrocola V.J. et al. // Nuclear Fusion. 2004. V. 44. P. 134. https://doi.org/10.1088/0029-5515/44/1/016
  28. Rhodes T.L., Peebles W.A., Nguyen X., Hillesheim J.C., Schmitz L., White A.E., Wang G. et al. // Rev. Sci. Instrum. 2006. V. 77. P. 10E922. https://doi.org/10.1063/1.3475797
  29. Ossipenko M.V. and T-10 Team // Nuclear Fusion. 2003. V. 43. P. 164.
  30. Vershkov V.A. et al. // Proc. 28th EPS Conf. Controlled Fusion and Plasma Physics, (Madeira, Portugal. 2001. ECA. V. 25A. P1.011.
  31. Krаmer-Flecken A., Soldatov S., Xu Y., Arnichand H., ¨ Hacquin S., Sabot R. and the TEXTOR team // New J. Phys. 2015. V. 17. P. 073007. https://doi.org/10.1088/1367-2630/17/7/073007
  32. Arnichand H., Sabot R., Hacquin S., Krаmer-¨Flecken A., Bourdelle C., Citrin J., Garbet X., Giacalone J.C., Guirlet R., Hillesheim J.C., Meneses L., and JET Contributors // Nuclear Fusion. 2015. V. 55. P. 093021. https://doi.org/10.1088/0029-5515/55/9/093021
  33. Melnikov A.V., Krupnik L.I., Ascasibar E., Cappa A., Chmyga A.A., Deshko G.N., Drabinskij M.A., Eliseev L.G., Hidalgo C., Khabanov P.O. et al. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 084008. https://doi.org/10.1088/1361-6587/aac97f
  34. Vershkov V.A., Buldakov M.A., Subbotin G.F., Shelukhin D.A., Melnikov A.V., Eliseev L.G., Kharchev N.K., Khabanov P.O., Drabinskiy M.A., Sergeev D.S. et al. // Nucl. Fusion. 2019. V. 59. P. 066021. https://doi.org/10.1088/1741-4326/ab15b1
  35. Estrada T., Sаnchez E., Garca-Regana J.M., Alon´so J.A., Ascasbar E., Calvo I., Cappa A., Carralero D., Hidalgo C., Liniers M. et al. // Nuclear Fusion. 2019. V. 59. P. 076021. https://doi.org/10.1088/1741-4326/ab1940
  36. Vershkov V.A., Grashin S.A., Dreval V.V., Piterskii V.V., Soldatov S.V., and Jakovets A.N. // J. Nucl. Mater. 1997. V. 241–243. P. 873. https://doi.org/10.1016/S0022-3115(97)80157-2
  37. Уразбаев А.О., Вершков В.А., Солдатов С.В., Шелухин Д.А. // Физика плазмы. 2006. Т. 32. С. 483.
  38. Vershkov V.A., Shelukhin D.A., Subbotin G.F., Dnestrovskij Yu.N., Danilov A.V., Melnikov A.V., Eliseev L.G., Maltsev S.G., Gorbunov E.P., Sergeev D.S. et al. // Nucl. Fusion. 2015. V. 55. P. 063014. https://doi.org/10.1088/0029-5515/55/6/063014
  39. Hillesheim J.C., DeBoo J.C., Peebles W.A., Carter T.A., Wang G., Rhodes T.L., Schmitz L., McKee G.R., Yan Z., Staebler G.M. et al. // Phys. Plasmas. 2013. V. 20. P. 056115. https://doi.org/10.1063/1.4807123
  40. Вершков В.А., Шелухин Д.А., Субботин Г.Ф., Булдаков М.А., Петров В.Г., Петров А.А., Алтухов А.Б., Гурченко А.Д., Гусаков Е.З., Ирзак М.А. // Физика Плазмы. 2021. Т. 47. С. 579.
  41. Vershkov V.A. // Controlled Fusion and Plasma Physics (Proc. 22nd Eur. Conf. Bournemouth. 1995. V. 19C. Part IV. P. 005, EPS, 1995).
  42. Vershkov V.A., Soldatov S.V., Shelukhin D.A. // in Proc. 16th Int. Conf. Fusion Energy. Montreal 1996. V. 1. P. 519.
  43. Weiland J., Nordman H. // Nuclear Fusion. 1991. V. 31. P. 390.
  44. Drabinsky M.A., Eliseev L.G., Khabanov P.O., Melnikov A.V., Kharchev N.K., Sergeev N.S., and Grashin S.A. // ICPAF 2019. J. Physics: Conf. Series. 2019. V. 1383. P. 012004. https://doi.org/10.1088/1742-6596/1383/1/012004
  45. Vershkov V.A., Dreval V.V., and Soldatov S.V. // Rev.Sci. Inctrum. 1999. V. 70. P. 1700. https://doi.org/10.1063/1.1149654
  46. Климов К.Н., Сестрорецкий Б.В., Вершков В.А., Солдатов С.В., Камышев Т.В., Рученков В.А. Электродинамический анализ двумерных неоднородных сред и плазмы. М.: Макс Пресс, 2005.
  47. Waltz R.E., Kerbel G.D., and Milovich J. // Phys. Plasmas. 1994. V. 1. P. 2229.
  48. Vershkov V.A., Andreev V.F., Borschegovskiy A.A., Chistyakov V.V., Dremin M.M., Eliseev L.G., Gorbunov E.P., Grashin S.A., Khmara A.V., Kislov A.Ya. et al. // Nucl. Fusion. 2011. V. 51. P. 094019.
  49. Арцимович Л.А., Бобровский Г.А., Горбунов Е.П., Иванов Д.П., Кириллов В.Д., Кузнецов Э.И., Мирнов С.В., Петров М.П., Разумова К.А., Стрелков В.С., Щеглов Д.А. // Plasma Phys. and Control. Nucl. Fusion Res. (Proc. 3th Int. Conf. Novosibirsk 1968). V. I. IAEA,Vienna. 1969. P. 157.
  50. Parker R.R., Greenwald M., Luckhardt S.C., Marmar E.S., Porkolab M., and Wolfe S.M. // Nuclear Fusion. 1985. V. 25. P. 1127. https://doi.org/10.1088/0029-5515/25/9/02
  51. Bravenec R.V., Gentle K.W., Phillips P.E., Price T.R., Rowan W.L., Empson K., Hodge W.L., Klepper C., Kochanski T.P., Patterson D.M. et al. // Plasma Phys. Control. Fusion. 1985. V. 27. P. 1335. https://doi.org/10.1088/0741-3335/27/11/009
  52. Efthimion P.C., Bretz N., Bell M., Bitter M., Blanchard W.R., Boody F., Boyd D., Bush C., Cecchi J.L. et al. // Plasma Physics and Controlled Nuclear Fusion Research (Proc. 10th Int. Conf., London, 1984) V. 1. Vienna: IAEA, 1985. P. 29.
  53. Garbet X., Payan J., Laviron C., Devynck P., Saha S.K., Capes H., Chen X.P., Coulon J.P., Gil C., Harris G.R. et al. // Nuclear Fusion. 1992. V. 32. P. 2147. https://doi.org/10.1088/0029-5515/32/12/I06
  54. Bracco G., Thomsen K. // Nucl. Fusion. 1997. V. 37. P. 759.
  55. Wagner F., Stroth U. // Plasma Phys. Control. Fusion. 1993. V. 35. P. 1321.
  56. Esipchuk Yu.V., Kirneva N.A., Borschegovskij A.A., Chistyakov V.V., and Denisov V.Ph. // Plasma Phys. Control. Fusion. 2003. V. 45. P. 793.
  57. Esposito B., Marinucci M., Romanelli M., Bracco G., Castaldo C., Cocilovo V., Giovannozzi E., Leigheb M., Monari G., Nowak S. et al. // Plasma Phys. Control. Fusion. 2004. V. 46. P. 2793. https://doi.org/10.1088/0741-3335/46/11/008
  58. Kadomtsev B.B. // Nuclear Fusion. 1978. V. 18. P. 553.
  59. Kadomtsev B.B. // Plasma Phys. Control. Fusion. 1992. V. 22. P. 1931.
  60. Okhawa T. // Phys. Lett. 1978. V. 67A. P. 35.
  61. Hegna C.C., Callen J.D., Gianakon T., Qu W., Smolyakov A.I., and Wang P. // Plasma Phys. Control. Fusion. 1999. V. 35. P. 987. https://doi.org/10.1088/0741-3335/35/8/007
  62. Callen J.D. // Phys. Plasmas. 2007. V. 14. P. 040701.
  63. Kwon O.J., Diamond P.H. // Nuclear Fusion. 1988. V. 28. P. 1931.
  64. Mantica P.M., Vayakis G., Hugill G., Cirant S., and Pits R.A. // Nuclear Fusion. 1991. V. 31. P.1649.
  65. Vayakis G. // Nucl. Fusion. 1993. V. 33. P. 547.
  66. Colas L., Zou X.L., Paume M., Chareau J.M., Guiziou L., Hoang G.T., Michelot Y., Gresillon D. ´ // Nuclear Fusion. 1998. V. 38. P. 903. https://doi.org/10.1088/0029-5515/38/6/308
  67. Rice J.E., Greenwald M.J., Podpaly Y.A., Reinke M.L., Diamond P.H., Hughes J.W., Howard N.T., Ma Y., Cziegler I., Duval B.P., Ennever P.C. et al. // Phys. Plasmas. 2012. V. 19. P. 056106. https://doi.org/10.1063/1.3695213
  68. Hatch D.R., Pueschel M.J., Jenko F., Nevins W.M., Terry P.W., and Doerk H. // Phys. Rev. Lett. 2012. V. 108. P. 235002.
  69. Rice J.E., Citrin J., Cao N.M., Diamond P.H., Greenwald M., and Grierson B.A. // Nuclear Fusion. 2020. V. 60. P. 105001. https://doi.org/10.1088/1741-4326/abac4b
  70. Grierson B.A., Chrystal C., Haskey S.R., Wang W.X., Rhodes T.L., McKee G.R., Barada K., Yuan X., Nave M.F.F., Ashourvan A., and Holland C. // Phys. Plasmas. 2019. V. 26. P. 042304. https://doi.org/10.1063/1.5090505
  71. Kramer-Flecken A., Dreval V., Soldatov S., Rogister A., Vershkov V., and the TEXTOR-team // Nucl. Fusion. 2004. V. 44. P. 1143.
  72. Arnichand H., Citrin J., Hacquin S., Sabot R., Krаmer-¨Flecken A., Garbet X., Bourdelle C., Bottereau C., Clairet F., Giacalone J.C. et al. // Plasma Phys. Control. Fusion. 2016. V. 58. P. 014037. https://doi.org/10.1088/0741-3335/58/1/014037
  73. Сергеев Н.С., Мельников А.В., Елисеев Л.Г. // Письма ЖЭТФ. 2024. Т. 119. С. 817. https://doi.org/10.31857/S1234567824110077
  74. Chen J., Brower D.L., McClenaghan J., Yan Z., Hubbard A.E., and Groebner R. // Nucl. Fusion. 2024. V. 64. P. 086054. https://doi.org/10.1088/1741-4326/ad5aae
  75. Beklemishev A.D., Horton W. // Phys Fluids B. 1992. V. 4. P. 200.
  76. Razumova K.A., Donne A.J.H., Andreev V.F. et al. ´ // Nuclear Fusion. 2004. V. 44. P. 1067.
  77. Melnikov A.V., Barcala J.M., Krupnik L.I., Hidalgo C., Eliseev L.G., Chmyga A.A., Chercoles J., Komarov A.D., Kozachek A.S., Khrebtov S.M. et al. // Fusion Eng. Design. 2015. V. 96. P. 724. https://doi.org/10.1016/j.fusengdes.2015.01.015
  78. Melnikov A.V. et al. // 28th IAEA Fusion Energy Conference (FEC 2020), 2021. https://conferences.iaea.org/event/214/contributions/17104/contribution.pdf
  79. Fontana M., Porte L., Coda S., Sauter O., Brunner S., Chandrarajan Jayalekshmi, Fasoli A., Merlo G., and The TCV Team // Nuclear Fusion. 2020. V. 60. P. 016006. https://doi.org/10.1088/1741-4326/ab4d75
  80. Stewart S.D., McKee G., Chrystal C., Cote T., Geiger B. Khabanov F., Nelson A.O., Qin X., Paz-Soldan C., Schmitz L. et al. // Plasma Phys. Control. Fusion. 2025. V. 67. P. 025032. https://doi.org/10.1088/1361-6587/ada823

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).