SPATIAL AREAS OF POTENTIAL AND DENSITY FLUCTUATION MEARSUMENTS USING HIBP ON THE T-15MD TOKAMAK

Cover Page

Cite item

Full Text

Abstract

The paper presents a numerical analysis of the possibility of performing local measurements of potential and plasma density fluctuations in the T-15MD tokamak using the Heavy Ion Beam Probe (HIBP) diagnostic. Four types of fluctuations are considered in the frequency range up to 500 kHz: Geodesic Acoustic Mode (GAM), Quasi-Coherent Mode (QCM), Tearing Mode (TM), and Alfven eigenmode (AE). For each type of fluctuation, spatial measurement areas are defined for regimes with different values of average density ne and toroidal magnetic field BT. Regimes with flat and peaked density profiles are considered. It is shown that high-Q fluctuations (GAM, AE, TM) can be measured in the peripheral region of the plasma ρ < 0.8 up to density ne ≤ 7 · 1019 m− 3, while low-Q QCMs can be measured up to ne ≤ 5 · 1019 m− 3. In the plasma gradient region ρ = 0.5 – 0.9 the measurement of high-Q fluctuations is possible at a density of ne ≤ 5 · 1019 m− 3, and of the low-Q QCM at a density of ne ≤ 3 · 1019 m− 3.

About the authors

E. A. Vinitskiy

National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”

Email: egor.vinitsky@gmail.com
Moscow, Russia

L. G. Eliseev

National Research Center “Kurchatov Institute”

Moscow, Russia

D. A. Shelukhin

National Research Center “Kurchatov Institute”

Moscow, Russia

Y. M. Ammosov

National Research Center “Kurchatov Institute”; National Research University “MIPT”

Moscow, Russia

A. V. Melnikov

National Research Center “Kurchatov Institute”; National Research Nuclear University “MEPhI”; National Research University “MIPT”

Moscow, Russia

References

  1. Conway G.D. // Plasma Phys. Control. Fusion. 2008. V. 50. P. 124026. https://doi.org/10.1088/0741-3335/50/12/124026
  2. Ido T., Hamada Y., Nishizawa A., Kawasumi Y., Miura Y., and Kamiya K. // Rev. Sci. Instrum. 1999. V. 70. P. 955. https://doi.org/10.1063/1.1149474
  3. Melnikov A. // Symmetry. 2021. V. 13. P. 1367. https://doi.org/10.3390/sym13081367
  4. Melnikov A.V., Bondarenko I.S., Efremov S.L., Kharchev N.K., Khrebotv S.M., Krupnik L.I., Nedzelskij I.S., Zimeleva L.G., and Trofimenko Y.V. // Rev. Sci. Instrum. 1995. V. 66. P. 317. https://doi.org/10.1063/1.1146427
  5. Chmyga O.O., Ascasibar E., Barcala J., Drabinskiy M.A., Eliseev L.G., Hidalgo C., Khabanov P.O., Khrebotv S.M., Komarov O.D., Kozachok O.S., Krupnik L.I., Lysenko S.E., Melnikov A.V., Molinero A., de Pablos J.L., Perfilov S.V., Zenin V.N. // Probl. Atomic Sci. Technol. 2019. V. 119. P. 248.
  6. Melnikov A.V., Eliseev L.G., Drabinskij M.A., Khabanov P.O., Kharchev N.K., Lysenko S.E., Krupnik L.I., Chmyga A.A., Deshko G.N., Khrebtov S.M., Komarov A.D., Kozachek A.S., Barcala J.M., Bravo A., Hidalgo C., Lopez J., Martin G., Molinero A., De Pablos J.L., Soleto A. et al. // Nuclear Fusion. 2017. V. 57. P. 072004. https://doi.org/10.1088/1741-4326/aa5382
  7. Crowley T.P. // IEEE Trans. Plasma Sci. 1994. V. 22. P. 291. https://doi.org/10.1109/27.310636
  8. Melnikov A.V., Drabinskiy M.A., Eliseev L.G., Khabanov P.O., Kharchev N.K., Krupnik L.I., De Pablos J.L., Kozachek A.S., Lysenko S.E., Molinero A., Igonkina G.B., and Sokolov M.M. // Fusion Eng. Design. 2019. V. 146. P. 850. https://doi.org/10.1016/j.fusengdes.2019.01.096
  9. Melnikov A.V., Barcala J.M., Krupnik L.I., Hidalgo C., Eliseev L.G., Chmyga A.A., Chercoles J., Komarov A.D., Kozachek A.S., Khrebtov S.M., Lopez J., Molinero A., Martin G., De Pablos J.L., Perfilov S.V., and Taschev Y.I. // Fusion Eng. Design. 2015. V. 96–97. P. 724. https://doi.org/10.1016/j.fusengdes.2015.01.015
  10. Drabinskiy M.A., Melnikov A.V., Khabanov P.O., Eliseev L.G., Kharchev N.K., Ilin A.M., Sarancha G.A., Vadimov N.A. // J. Instrum. 2019. V. 14. P. 11027. https://doi.org/10.1088/1748-0221/14/11/C11027
  11. Вершков В.А., Мельников А.В., Елисеев Л.Г. // Сб. тез. докладов LII междунар. конфер. по физике плазмы и УТС. Научно-технологический центр ПЛАЗМАИОФАН, Москва, 2025. С. 47. https://doi.org/10.34854/ICPAF.52.2025.1.1.009
  12. Melnikov A.V., Drabinskij M.A., Eliseev L.G., Khabanov P.O., Kharchev N.K., Lysenko S.E., Zenin V.N., Krupnik L.I., Chmyga A.A., Deshko G.N., Khrebtov S.M., Komarov A.D., Kozachek A.S., Ascasicar E., Cappa A., Hidalgo C., Molinero A., De Pablos J.L., and Ufimtsev M.V. // Plasma Phys. Control. Fusion. 2018. V. 60. P. 084008. https://doi.org/10.1088/1361-6587/aac97f
  13. Wong K.L. // Plasma Phys. Controlled Fusion. 1999. V. 41. P. R1. https://doi.org/10.1088/0741-3335/41/1/001
  14. Conway G.D., Smolyakov A.I., and Ido T. // Nuclear Fusion. 2022. V. 62. P. 013001. https://doi.org/10.1088/1741-4326/ac0dd1
  15. La Haye R.J. // Phys. Plasmas. 2006. V. 13. P. 055501. https://doi.org/10.1063/1.2180747
  16. Lee W., Lee J., Lee D.J., Park H.K., and Kstar Team // Nucl. Fusion. 2021. V. 61. P. 016008. https://doi.org/10.1088/1741-4326/abbdc0
  17. Zhong W.L., Zou X.L., Shi Z.B., Duan X.R., Xu Y., Xu M., Chen W., Jiang M., Yang Z.C., Zhang B.Y. et al. // Plasma Phys. Control. Fusion. 2016. V. 58. P. 067001. https://doi.org/10.1088/0741-3335/58/6/065001
  18. Bulanin V.V., Askinazi L.G., Belokurov A.A., Kornev V.A., Lebedev V., Petrov A.V., Tukachinsky A.S., Vildjunas M.I., Wagner F., Yashin A.Y. // Plasma Phys. Control. Fusion. 2016. V. 58. P. 045006. https://doi.org/10.1088/0741-3335/58/4/045006
  19. Bulanin V.V., Gusev V.K., Iblyaminova A.D., Khromov N.A., Kurskiev G.S., Minaev V.B., Patrov M.I., Petrov A.V., Petrov Y.V., Sakharov N.V., Shchegolev P.B., Tolstyakov S.Y., Varfolomeev V.I., Wagner F., and Yashin Y. // Nuclear Fusion. 2016. V. 56. P. 016017. https://doi.org/10.1088/0029-5515/56/1/016017
  20. Yashin A.Y., Bulanin V.V., Gusev V.K., Kurskiev G.S., Patrov M.I., Petrov A.V., Petrov Y.V., and Tolstyakov S.Y. // Nuclear Fusion. 2018. V. 58. P. 112009. https://doi.org/10.1088/1741-4326/aac4d8
  21. Gurchenko A.D., Gusakov E.Z., Altukhov A.B., Selyunin E.P., Esipov L.A., Kantor M.Y., Kouprienko D.V., Lashkul S.I., Stepanov A.Y., and Wagner F. // Plasma Phys. Control. Fusion. 2013. V. 55. P. 085017. https://doi.org/10.1088/0741-3335/55/8/085017
  22. Melnikov A.V., Eliseev L.G., Drabinskiy M.A., Grashin S.A., Khabanov P.O., Kharchev N.K., Lysenko S.E., and Zenin V.N. // 27th IAEA Fusion Energy Conference (FEC 201). 2018.
  23. Melnikov A.V., Eliseev L.G., Grashin S.A., Drabinskiy M.A., Khabanov P.O., Kharchev N.K., Krupnik L.I., Kozachek A.S., Lysenko S.E., Zenin V.N., HIBP Team // Plasma Fusion Res. 2018. V. 13. P. 3402109. https://doi.org/10.1585/PFR.13.3402109
  24. Melnikov A.V., Eliseev L.G., Gudozhnik A.V., Lysenko S.E., Mavrin V.A., Perfilov S.V., Zimeleva L.G., Ufimtsev M.V., Krupnik L.I., Schoch P.M. // Czechoslovak J. Phys. 2005. V. 55. P. 349. https://doi.org/10.1007/s10582-005-0046-6
  25. Askinazi L.G., Vildjunas M.I., Zhubr N.A., Komarov A.D., Kornev V.A., Krikunov S.V., Krupnik L.I., Lebedev S.V., Rozhdestvensky V.V., Tendler M., Tukachinsky A.S., Khrebtov S.M. // Tech. Phys. Lett. 2012. V. 38. P. 268. https://doi.org/10.1134/S1063785012030194
  26. Melnikov A.V., Vershkov V.A., Grashin S.A., Drabinskiy M.A., Eliseev L.G., Zemtsov I.A., Krupin V.A., Lakhin V.P., Lysenko S.E., Nemets A.R., Nurgaliev M.R., Khartchev N.K., Khabanov P.O., and Shelukhin D.A. // JETP Lett. 2022. V. 115. P. 324. https://doi.org/10.1134/S0021364022200279
  27. Eliseev L.G., Melnikov A.V., and Lysenko S.E. // Rev. Mod. Plasma Phys. 2022. V. 6. P. 25. https://doi.org/10.1007/s41614-022-00088-y
  28. Melnikov A.V., Sushkov A.V., Belov A.M., Dnestrovskij Y.N., Eliseev L.G., Gorshkov A.V., Ivanov D.P., Kirneva N.A., Korobov K.V., Krupin V.A. et al. // Fusion Eng. Des. 2015. Vol. 96–97. P. 306. https://doi.org/10.1016/j.fusengdes.2015.06.080
  29. Khvostenko P.P., Anashkin I.O., Bondarchuk E.N., Injutin N.V., Khvostenko A.P., Kochin V.A., Kuzmin E.G., Levin I.V., Lutchenko A.V., Modyaev A.L., Nikolaev A.V., Notkin G.E., Romannikov A.N., Sidorenko D.M., Sokolov M.M., Solopeko A.V., and Sushkov A.V. // Fusion Eng. Design. 2019. V. 146. P. 1108. https://doi.org/10.1016/j.fusengdes.2019.02.018
  30. Анашкин И.О., Андреев В.Ф., Аристов А.И., Асадулин Г.М., Ахмедов Э.Р., Ахтырский С.В., Балашов А.Ю., Бегишев Р.А., Белов А.М., Борщеговский А.А., Дремин М.М., Дрозд А.С., Дубинщикий А.Ф., Горбунов А.В., Горшков А.В., Грашин С.А., Губанова А.И., Елисеев Л.Г. и др. // LII междунар. звенигородская конф. по физике плазмы и УТС. Научно-технологический центр ПЛАЗМА- ИОФАН. Москва, 2025. С. 40. https://doi.org/10.34854/ICPAF.52.2025.1.1.002
  31. Vinitskiy E.A., Krohalev O.D., Eliseev L.G., and Melnikov A.V. // Phys. Atomic Nucl. 2024. V. 87. P. 1330. https://doi.org/10.1134/S1063778824090448
  32. Welch P.D. // IEEE Trans. Audio Electroacoust. 1967. V. 15. P. 70. https://doi.org/10.1109/TAU.1967.1161901
  33. Крохалев О.Д., Елисеев Л.Г., Мельников А.В. Сб. науч. тр. Х Междунар. конф. Лазерные, плазменные исследования и технологии ЛАПЛАЗ-2024 / Национальный исследовательский ядерный ун-т “МИФИ”, М., 2024. С. 172.
  34. Leonov V.M. // Problems Atomic Sci. Technol. Ser. Thermonucl. Fusion. 2016. V. 39. P. 73. https://doi.org/10.21517/0202-3822-2016-39-3-73-79
  35. Vershkov V.A., Shelukhin D.A., Subbotin G.F., Buldakov M.A., Petrov V.G., Petrov A.A., Altukhov A.B., Gurchenko A.D., Gusakov E.Z., and Irzak M.A. // Plasma Physics Reports. 2021. V. 47. P. 637. https://doi.org/10.1134/S1063780X2107014X
  36. Шелухин Д.А., Вершков В.А., Лукьянов В.В., Молчанов Д.С., Соловьев Н.А., Владимиров И.А., Логинов А.А. // Физика плазмы. 2025. Т. 51. С. 251. https://doi.org/10.31857/S0367292125030014

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).