SIMULATION OF THE ANTENNA-PLASMA COUPLING EFFICIENCY OF THE THREE-LOOP ICR ANTENNA OF THE T-15MD TOKAMAK
- Авторлар: Nedbailov K.O1,2, Meshcharyakov A.I3
-
Мекемелер:
- Moscow Institute of Physics and Technology (State University)
- National Research Center "Kurchatov Institute"
- Prokhorov General Physics Institute, Russian Academy of Sciences
- Шығарылым: Том 51, № 10 (2025)
- Беттер: 1070-1086
- Бөлім: TOKAMAKS
- URL: https://journal-vniispk.ru/0367-2921/article/view/382356
- DOI: https://doi.org/10.31851/S0367292125100032
- ID: 382356
Дәйексөз келтіру
Толық мәтін
Аннотация
Currently, the National Research Center "Kurchatov Institute" is developing an ion-cyclotron resonance (ICR) heating system for the T-15MD tokamak. The ICRF (ion cyclotron range of frequency) system is to be used to heat the ion component of the plasma and generate a non-inductive current (drag current). The total power of the system is 6 MW with a pulse duration of up to 30 s. Under these parameters, reflected power could lead to failure of the ion-cyclotron resonance heating (ICRH) of the system. Therefore, matching the load (plasma) to the generator requires special attention. This work presents a numerical study of the antenna-plasma coupling efficiency for a three-loop antenna developed for ICRF plasma heating in the T-15MD tokamak. The dependence of the antenna impedance on plasma parameters, its position, and the phasing of the antenna excitation currents is studied.
Авторлар туралы
K. Nedbailov
Moscow Institute of Physics and Technology (State University); National Research Center "Kurchatov Institute"
Email: nedbajlov.ko@phystech.edu
Dolgoprudnyi, Moscow region, Russia; Moscow, Russia
A. Meshcharyakov
Prokhorov General Physics Institute, Russian Academy of SciencesMoscow, Russia
Әдебиет тізімі
- Messiaen A.M., Conrads H., Gaigneaux M., Ongena J., Weynants R.R., Bertschinger G., Beuken J.M., Cornelissen P., Delvigne T., Durodie F. et al. // Plasma Phys. Control. Fusion. 1990. V. 32. P. 889. https://doi.org/10.1088/0741-3335/32/11/005
- Petty C.C., Baity F.W., deGrassie J.S., Forest C.B., Luce T.C., Mau T.K., Murakami M., Pinsker R.I., Politzer P.A., Porkolab M., and Prater R. // Nuclear Fusion. 1999. V. 39. P. 1421. https://doi.org/10.1088/0029-5515/39/10/305
- Хвостенко П.П., Анашкин И.О., Бондарчук Э.Н., Инютин Н.В., Крылов В.А., Левин И.В., Минеев А.Б., Соколов М.М. // ВАНТ. Сер. Термоядерный синтез. 2019. Т. 42. С. 15. https://doi.org/10.21517/0202-3822-2019-42-1-15-38
- Bobkov V., Braun F., Dux R., Herrmann A., Faugel H., Fünfgelder H., Kallenbach A., Neu R., Noterdaeme J.-M., Ochoukov R. et al. // Nuclear Fusion. 2016. V. 56. P. 084001. https://doi.org/10.1088/0029-5515/56/8/084001
- Naumenko P.R., Nedbailov K.O., and Chernenko A.S. // Plasma Phys. Rep. 2024. V. 50. P. 1122.
- Akhiezer A.I., Akhiezer I.A., Polovinkin R.V., Sitenko A.G., and Stepanov K.N. Plasma electrodynamics. V. I. Linear theory. Pergamon Press, 1975.
- Stix T.H. Waves in plasmas. New York: American Institute of Physics, 1992. 594 p.
- Логинов А.В., Степанов К.Н. О высокочастотном нагреве неоднородной плазмы. Харьков, 1972.
- Vdovin V.L. // Nuclear Fusion. 1983. V. 23. P. 1435.
- Zhang J.-H., Zhang X.-J., Zhao Y.-P., Qin C.-M., Chen Zh., Yang L., and Wang J.-H. // Chinese Phys. B. 2016. V. 25. P. 085201. https://doi.org/10.1088/1674-1056/25/8/085201
- Zhang J.H., Zhang X.J., Cheng Y., Qin C.M., Zhao Y.P., Mao Y.Z., Yuan S., Wang L., Ju S.Q., Chen G. et al. // Nucl. Fusion. 2017. V. 57. P. 066030. https://doi.org/10.1088/1741-4326/aa69ca
Қосымша файлдар
