SIMULATION OF THE ANTENNA-PLASMA COUPLING EFFICIENCY OF THE THREE-LOOP ICR ANTENNA OF THE T-15MD TOKAMAK
- Authors: Nedbailov K.O1,2, Meshcharyakov A.I3
-
Affiliations:
- Moscow Institute of Physics and Technology (State University)
- National Research Center "Kurchatov Institute"
- Prokhorov General Physics Institute, Russian Academy of Sciences
- Issue: Vol 51, No 10 (2025)
- Pages: 1070-1086
- Section: TOKAMAKS
- URL: https://journal-vniispk.ru/0367-2921/article/view/382356
- DOI: https://doi.org/10.31851/S0367292125100032
- ID: 382356
Cite item
Full Text
Abstract
Currently, the National Research Center "Kurchatov Institute" is developing an ion-cyclotron resonance (ICR) heating system for the T-15MD tokamak. The ICRF (ion cyclotron range of frequency) system is to be used to heat the ion component of the plasma and generate a non-inductive current (drag current). The total power of the system is 6 MW with a pulse duration of up to 30 s. Under these parameters, reflected power could lead to failure of the ion-cyclotron resonance heating (ICRH) of the system. Therefore, matching the load (plasma) to the generator requires special attention. This work presents a numerical study of the antenna-plasma coupling efficiency for a three-loop antenna developed for ICRF plasma heating in the T-15MD tokamak. The dependence of the antenna impedance on plasma parameters, its position, and the phasing of the antenna excitation currents is studied.
About the authors
K. O Nedbailov
Moscow Institute of Physics and Technology (State University); National Research Center "Kurchatov Institute"
Email: nedbajlov.ko@phystech.edu
Dolgoprudnyi, Moscow region, Russia; Moscow, Russia
A. I Meshcharyakov
Prokhorov General Physics Institute, Russian Academy of SciencesMoscow, Russia
References
- Messiaen A.M., Conrads H., Gaigneaux M., Ongena J., Weynants R.R., Bertschinger G., Beuken J.M., Cornelissen P., Delvigne T., Durodie F. et al. // Plasma Phys. Control. Fusion. 1990. V. 32. P. 889. https://doi.org/10.1088/0741-3335/32/11/005
- Petty C.C., Baity F.W., deGrassie J.S., Forest C.B., Luce T.C., Mau T.K., Murakami M., Pinsker R.I., Politzer P.A., Porkolab M., and Prater R. // Nuclear Fusion. 1999. V. 39. P. 1421. https://doi.org/10.1088/0029-5515/39/10/305
- Хвостенко П.П., Анашкин И.О., Бондарчук Э.Н., Инютин Н.В., Крылов В.А., Левин И.В., Минеев А.Б., Соколов М.М. // ВАНТ. Сер. Термоядерный синтез. 2019. Т. 42. С. 15. https://doi.org/10.21517/0202-3822-2019-42-1-15-38
- Bobkov V., Braun F., Dux R., Herrmann A., Faugel H., Fünfgelder H., Kallenbach A., Neu R., Noterdaeme J.-M., Ochoukov R. et al. // Nuclear Fusion. 2016. V. 56. P. 084001. https://doi.org/10.1088/0029-5515/56/8/084001
- Naumenko P.R., Nedbailov K.O., and Chernenko A.S. // Plasma Phys. Rep. 2024. V. 50. P. 1122.
- Akhiezer A.I., Akhiezer I.A., Polovinkin R.V., Sitenko A.G., and Stepanov K.N. Plasma electrodynamics. V. I. Linear theory. Pergamon Press, 1975.
- Stix T.H. Waves in plasmas. New York: American Institute of Physics, 1992. 594 p.
- Логинов А.В., Степанов К.Н. О высокочастотном нагреве неоднородной плазмы. Харьков, 1972.
- Vdovin V.L. // Nuclear Fusion. 1983. V. 23. P. 1435.
- Zhang J.-H., Zhang X.-J., Zhao Y.-P., Qin C.-M., Chen Zh., Yang L., and Wang J.-H. // Chinese Phys. B. 2016. V. 25. P. 085201. https://doi.org/10.1088/1674-1056/25/8/085201
- Zhang J.H., Zhang X.J., Cheng Y., Qin C.M., Zhao Y.P., Mao Y.Z., Yuan S., Wang L., Ju S.Q., Chen G. et al. // Nucl. Fusion. 2017. V. 57. P. 066030. https://doi.org/10.1088/1741-4326/aa69ca
Supplementary files

