Magnetic nanoparticles Fe3O4 modified with sodium dodecyl sulphate for removing methylene blue from water

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We show that surface-modified magnetic iron oxide nanoparticles with an average size of about 10 nm have a high adsorption capacity for sorption of pollutants from wastewater. A significant advantage of using magnetic materials is the ability to extract the sorbent using an external magnetic field, which makes the purification process more efficient. We found that the anionic substance sodium dodecyl sulfate increases the electrostatic attraction to the cationic compound methylene blue, and also prevents the aggregation of nanoparticles, thus increasing the active surface. The sorption capacity of magnetic nanoparticles after surface functionalization increased by a factor of 250 compared to unmodified iron oxide nanoparticles. The mechanism and kinetic parameters of the sorption process were determined, as well as the optimal conditions for increasing the efficiency of the sorption process.

About the authors

K. E. Magomedov

Immanuel Kant Baltic Federal University; Dagestan State University

Author for correspondence.
Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad; Russia, 367008, Makhachkala

A. S. Omelyanchik

Immanuel Kant Baltic Federal University

Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad

S. A. Vorontsov

Immanuel Kant Baltic Federal University

Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad

E. Čižmár

Institute of Physics, Faculty of Science, P.J. Šafárik University

Email: m_kurban@mail.ru
Slovakia, 041 80, Košice

V. V. Rodionova

Immanuel Kant Baltic Federal University

Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad

E. V. Levada

Immanuel Kant Baltic Federal University

Email: m_kurban@mail.ru
Russia, 236041, Kaliningrad

References

  1. Islam M.A., Ali I., Karim S.M.A. et al. // J. Water Process Eng. 2019. V. 32. Art. No. 100911.
  2. Nidheesh P.V., Zhou M., Oturan M.A. // Chemosphere. 2018. V. 197. P. 210.
  3. Dutta S., Gupt, B., Srivastava S.K., Gupt A.K. // Mater. Advances. 2021. V. 2. No. 14. P. 4497.
  4. Piaskowski K., Świderska-Dąbrowska R., Zarzyck P.K. // J. AOAC Int. 2018. V. 101. No. 5. P. 1371.
  5. Ren L., Zhao G., Pan L. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. No. 16. P. 19176.
  6. Bal G., Thakur A. // Materials Today. 2022. V. 50. Part 5. P. 1575.
  7. Bilal M., Ihsanullah I., Hassan Shah M.U. et al. // J. Environ. Manage. 2022. V. 321. Art. No. 115981.
  8. Orudzhev F., Ramazanov S., Sobola D. et al. // Nano Energy. 2021. V. 90. Art. No. 106586.
  9. Orudzhev F., Ramazanov S., Sobola D. et al. // Nanomaterials. 2020. V. 10. № 11. Art. No. 2183.
  10. Juang R.S., Wu F.C., Tseng R.L. // Colloids Surf. A. 2002. V. 201. No. 1–3. P. 191.
  11. Hussain Z., Chang N., Sun J. et al. // J. Hazard. Mater. 2021. V. 422. Art. No. 126778.
  12. Alam M.Z., Bari M.N., Kawsari S. // Environ. Sustain. Ind. 2022. V. 14. Art. No. 100176.
  13. Verma R., Asthana A., Singh A.K. et al. // Microchemical J. 2017. V. 130. P. 168.
  14. Campos A.F.C., Reis P.F., Neiva J.V.C.M. et al. // Mater. Res. 2021. V. 25. No. 4. Art. No. e20210217.
  15. de Oliveira H.A.L., Campos A.F.C., Gomide G. et al. // Colloids Surf. A. 2020. V. 600. Art. No. 125002.
  16. Campos A.F.C., Michels-Brito P.H., da Silva F.G. et al. // J. Environ. Chem. Eng. 2019. V. 7. No. 2. Art. No. 103031.
  17. Talbot D., Queiros Campos J., Checa-Fernandez B.L. et al. // ACS Omega. 2021. V. 6. No. 29. P. 19086.
  18. Li L.H., Xiao J., Liu P., Yang G.W. // Sci. Reports. 2015. V. 5. Art. No. 9028.
  19. Lu H., Zhang L., Wang B. et al. // Cellulose. 2019. V. 26. No. 8. P. 4909.
  20. Ali I. // Chem. Rev. 2012. V. 112. No. 10. P. 5073.
  21. Simonsen G., Strand M., Øye G. // J. Petrol. Sci. Eng. 2018. V. 165. P. 488.
  22. Yin F., Yu J., Gupta S. et al. // Fuel Proc. Technol. 2014. V. 117. P. 17.
  23. Salvador M., Moyano A., Martínez-García J.C. et al. // J. Nanosci. Nanotechnol. 2019. V. 19. No. 12. P. 4839.
  24. Socoliuc V., Peddis D., Petrenko V.I. et al. // Magnetochemistry. 2020. V. 6. No. 1. Art. No. 2.
  25. Silva F.G. da, Depeyrot J., Campos A.F.C. et al. // J. Nanosci. Nanotechnol. 2019. V. 19. No. 8. P. 4888.
  26. Massart R. // IEEE Trans. Magn. 1981. V. 17. No. 2. P. 1247.
  27. Omelyanchik A., da Silva F.G., Gomide G. et al. // J. Alloys Compounds. 2021. V. 883. Art. No. 160779.
  28. Omelyanchik A., Kamzin A.S., Valiullin A.A. et al. // Colloids Surf. A. 2022. V. 647. Art. No. 129090.
  29. Lu A.H., Salabas E.L., Schüth F. // Angew. Chem. Int. Ed. 2007. V. 46. No. 8. P. 1222.
  30. Illés E., Szekeres M., Kupcsik E. et al. // Colloids Surf. A. 2014. V. 460. P. 429.
  31. Tombácz E., Bica D., Hajdú A. et al. // J. Phys. Cond. Matt. 2008. V. 20. Art. No. 204103.
  32. Abdolrahimi M., Vasilakaki M., Slimani S. et al. // Nanomaterials. 2021. V. 11. No. 7. Art. No. 1787.
  33. Illés E., Szekeres M., Kupcsik E. et al. // Colloids Surf. A. 2014. V. 460. P. 429.
  34. Feitoza N.C., Gonçalves T.D., Mesquita J.J. et al. // J. Hazard. Mater. 2014. V. 264. No. 1. P. 153.
  35. Rcuciu M., Creang D.E., Airinei A. // Eur. Phys. J. E. 2006. V. 21. No. 2. P. 117.
  36. Li L., Mak K.Y., Leung C.W. et al. // Microelectron. Eng. 2013. V. 110. No. 10. P. 329.
  37. Campos A.F.C., Michels-Brito P.H., da Silva F.G. et al. // J. Environ. Chem. Eng. 2019. V. 7. No. 2. Art. No. 103031.
  38. Sandler S.E., Fellows B.D., Mefford O.T. // Analyt. Chem. 2019. V. 91. No. 22. P. 14159.
  39. Sharifi Dehsari H., Ksenofontov V., Möller A. et al. // J. Phys. Chem. C. 2018. V. 122. No. 49. P. 28292.
  40. Pacakova B., Kubickova S., Reznickova A. et al. Spinel ferrite nanoparticles: correlation of structure and magnetism. In: Magnetic spinels. Synthesis, properties and applications. InTech, 2017.
  41. Frison R., Cernuto G., Cervellino A. et al. // Chem. Mater. 2013. V. 25. No. 23. P. 4820.
  42. Bruvera I.J., Mendoza Zélis P., Pilar Calatayud M. et al. // J. Appl. Phys. 2015. V. 118. No. 18. Art. No. 184304.
  43. Muscas G., Jovanovi S., Vukomanovi M. et al. // J. Alloys Compounds. 2019. V. 796. No. 5. P. 203.
  44. Morrish A.H. The physical principles of magnetism. Piscataway: IEEE Press, 1965. 700 p.
  45. Batlle X., Pérez N., Guardia P. et al. // J. Appl. Phys. 2011. V. 109. No. 7. P. 1.
  46. Petrinic I., Stergar J., Bukšek H. et al. // Nanomaterials. 2021. V. 11. Art. No. 2965.
  47. Zhao X., Shi Y., Wang T. et al. // J. Chromatogr. A. 2008. V. 1188. No. 2. P. 140.
  48. Reddy D.H.K., Yun Y.S. // Coord. Chem. Rev. 2016. V. 315. P. 90.
  49. Ho Y.S., McKay G. // Process Biochem. 1999. V. 34. P. 451.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (242KB)
4.

Download (113KB)
5.

Download (128KB)
6.

Download (645KB)

Copyright (c) 2023 К.Э. Магомедов, А.С. Омельянчик, С.А. Воронцов, Э. Чижмар, В.В. Родионова, Е.В. Левада

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».