Carbon nanoparticle identification using transmission electron microscopy methods in biological samples
- 作者: Masyutin A.G.1,2, Tarasova E.K.2, Onishchenko G.E.1, Erokhina M.V.1,2
-
隶属关系:
- Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University
- Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute
- 期: 卷 87, 编号 10 (2023)
- 页面: 1410-1415
- 栏目: Articles
- URL: https://journal-vniispk.ru/0367-6765/article/view/141835
- DOI: https://doi.org/10.31857/S0367676523702460
- EDN: https://elibrary.ru/PJZMVK
- ID: 141835
如何引用文章
详细
Carbon nanoparticles are a common type of nanoparticles, the identification of which in biological samples is associated with great difficulties. It is demonstrated that the use of standard transmission electron microscopy in combination with the electron diffraction method is a reliable and relevant tool for the carbon nanoparticles identification in biological samples.
作者简介
A. Masyutin
Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University; Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute
编辑信件的主要联系方式.
Email: squiggoth@yandex.ru
Russia, 119234, Moscow; Russia, 107564, Moscow
E. Tarasova
Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute
Email: squiggoth@yandex.ru
Russia, 107564, Moscow
G. Onishchenko
Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University
Email: squiggoth@yandex.ru
Russia, 119234, Moscow
M. Erokhina
Department of Cell Biology and Histology, Faculty of Biology, Lomonosov Moscow State University; Department of Pathomorphology, Cell Biology and Biochemistry, Central Tuberculosis Research Institute
Email: squiggoth@yandex.ru
Russia, 119234, Moscow; Russia, 107564, Moscow
参考
- Simakov S.K. // Geosci. Front. 2018. V. 9. No. 6. P. 1849.
- Notarianni M., Liu J., Vernon K. et al. // Beilstein J. Nanotechnol. 2016. V. 7. P. 149.
- Bandlapalli C., SreeGaddam H.U., Chintmaneni P.K. et al. // Saudi J. Med. Pharm. Sci. 2021. V. 7. No. 8. P. 395.
- Suzuki S., Mori S. // J. Air Waste Manag. Assoc. 2017. V. 67. No. 8. P. 873.
- Losacco C., Perillo A. // Environ. Sci. Pollut. Res. 2018. V. 25. Art. No. 33901.
- Strojny B., Kurantowicz N., Sawosz E. et al. // PLoS ONE. 2015. V. 10. No. 12. Art. No. e0144821.
- Glaeser R.M., Gareth T. // Biophys. J. 1969. V. 9. No. 9. P. 1073.
- Yuan X., Zhang X., Sun L. et al. // Part. Fibre Toxicol. 2019. V. 1. No. 16. P. 18.
- Malatesta M. // Int. J. Mol. Sci. 2021. V. 22. P. 12789.
- Mühlfeld C., Rothen-Rutishauser B., Vanhecke D. et al. // Part. Fibre Toxicol. 2007. V. 4. Art. No. 11.
- Kurynina A.V., Erokhina M.V., Makarevich O.A. et al. // Biochem. 2018. V. 83. No. 3. P. 200.
- Кирпичников М.П. Порядок выявления и идентификации агрегатов многостенных углеродных нанотрубок в срезах тканей животных и растений методами аналитической электронной микроскопии: Методические рекомендации МР 1.2.0045-11. М.: ФЦГиЭ Роспотребнадзора, 2012. с. 39.
- Reynolds E.S. // J. Cell Biol. 1963. V. 1. No. 17. P. 208.
- Sasaki H., Arai H., Kikuchi E. et al. // Sci. Reports. 2022. V. 12. No. 1. P. 7756.
- Yildirimer L., Thanh N.T.K., Loizidou M. et al. // Nano Today. 2011. V. 6. No. 6. P. 585.
- Joshi A., Kaur S., Singh P. et al. // Appl. Nanosci. 2018. V. 6. No. 8. P. 1399.
- Nagaraju K., Reddy R., Reddy N. // J. Appl. Biomater. Funct. Mater. 2015. V. 4. No. 13. Art. No. e301-12.
- Coméra C., Cartier C., Gaultier E. et al. // Part. Fibre Toxicol. 2020. V. 1. No. 17. P. 26.
- Shebanova A. S., Bogdanov A.G., Ismagulova T.T. et al. // Biophysics. 2014. V. 2. No. 59. P. 284.
- Gass M., Porter A., Bendall J. et al. // Ultramicroscopy. 2009. No. 110. P. 946.
- Snyder-Talkington B.N., Schwegler-Berry D., Castranova V. et al. // Part. Fibre Toxicol. 2013. V. 10. P. 35.
