Efficiency of sub-THz – DC energy conversion of a silicon detector

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The efficiency of sub-THz to DC energy conversion of a silicon-based plasmonic detector was studied. The dependence of the signal at the detector output on the incident radiation power was measured. In the power linear region, the coefficient η was shown to grow with increasing power and to saturate in the sub-linear regime. The maximum achieved values of η were 0.4% for the radiation frequency of 97 GHz. The measurements were carried out both at room temperature and when the detector was cooled to liquid nitrogen temperature.

Texto integral

Acesso é fechado

Sobre autores

A. Shchepetilnikov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: shchepetilnikov@issp.ac.ru
Rússia, Chernogolovka

A. Khisameeva

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: shchepetilnikov@issp.ac.ru
Rússia, Chernogolovka

Ya. Fedotova

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: shchepetilnikov@issp.ac.ru
Rússia, Chernogolovka

A. Dryomin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: shchepetilnikov@issp.ac.ru
Rússia, Chernogolovka

I. Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: shchepetilnikov@issp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. Baydin A., Makihara T., Peraca N.M., Kono J. // Front. Optoelectron. 2021. V. 14. P. 110.
  2. Wang P.L., Lou J., Fang G.Y., Chang C. // IEEE Trans. Microw. Theory Techn. 2022. V. 70. No. 11. P. 5117.
  3. Pearson J.C., Drouin B.J., Yu S. // IEEE J. Microw. 2021. V. 1. No. 1. P. 43.
  4. Chen Z., Ma X., Zhang B. et al. // China Commun. 2019. V. 16. No. 2. P. 1.
  5. Yang X., Zhao X., Yang K. et al. // Trends Biotechnol. 2016. V. 34. No. 10. P. 810.
  6. Tzydynzhapov G., Gusikhin P., Muravev V. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 632.
  7. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // Appl. Opt. 2021. V. 60. No. 33. P. 10448.
  8. Shinohara N. Recent wireless power transfer technologies via radio waves. Gistrup: River Publishers, 2018.
  9. Mizojiri S., Shimamura K. // IEEE Asia-Pacific Microwave Conference (APMC). (Singapore, 2019). P. 705.
  10. Citroni R., Di Paolo F., Livreri P. // Nanomaterials. 2022. V. 12. No. 14. P. 2479.
  11. Joseph S.D., Hsu Sh.H.S., Huang Y. // IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT). 2021. P. 1.
  12. Muravev V.M., Gusikhin P.A., Andreev I.V., Kukushkin I.V. // Phys. Rev. Lett. 2015. V. 114. No. 10. Art. No. 106805.
  13. Muravev V.M., Gusikhin P.A., Zarezin A.M. et al. // Phys. Rev. B. 2019. V. 99. No. 24. Art. No. 241406.
  14. Muravev V.M., Kukushkin I.V. // Appl. Phys. Lett. 2012. V. 100. No. 8. Art. No. 082102.
  15. Муравьев В.М., Соловьев В.В., Фортунатов А.А. и др. // Письма в ЖЭТФ. 2016. Т. 103. № 12. С. 891.
  16. Shchepetilnikov A.V., Kaysin V.D., Gusikhin P.A. et al. // Opt. Quantum Electron. 2019. V. 51. No. 12. P. 1.
  17. Shchepetilnikov A.V., Kukushkin I.V., Muravev V.M. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 655.
  18. Хисамеева А.Р., Щепетильников А.И., Федотова Я.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 2. С. 172; Khisameeva A.R., Shchepetilnikov A.V., Fedotova Ya.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 2. P. 145.
  19. Chiou H.K., Chen I.S. // IEEE Trans. Microw. Theory Techn. 2010. V. 58. No. 12. P. 3598.
  20. Weissman N., Jameson S., Socher E. W-band CMOS on-chip energy harvester and rectenna // IEEE MTT-S Int. Microwave Symp. (Tampa, 2014). P. 1.
  21. Kapilevich B., Shashkin V., Litvak B. et al. // IEEE Microwave. Wirel. Compon. Lett. 2016. V. 26. No. 8. P. 637.
  22. Shaulov E., Jameson S., Socher E. // IEEE MTT-S Int. Microwave Symp. (Honolulu, 2017). P. 307.
  23. He P., Zhao D.A. // IEEE MTT-S Int. Microwave. Symp. (Boston, 2019). P. 634.
  24. Wentzel A., Yacoub H., Johansen T.K. et al. // Proc. 17th EuMIC (Milan, 2022). P. 208.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the detector sensitivity on the frequency of subterahertz radiation measured at room temperature (a). Dependence of the constant voltage at the detector output on the power of subterahertz radiation incident on the detector at room temperature (black circles) and at the temperature of liquid nitrogen (blue circles). The frequency of radiation is 97 GHz (b). Dependence of the electromagnetic wave energy conversion coefficient into DC energy on the radiation power at room temperature (black circles) and at the temperature of liquid nitrogen (blue circles). Radiation frequency - 97 GHz (c)

Baixar (329KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».