Comparison of second harmonic generation efficiency in alumo- and germanosilicate glasses at volumetric optical poling
- Authors: Vostrikova L.I.1, Kartashev l.A.1
-
Affiliations:
- Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences
- Issue: Vol 88, No 7 (2024)
- Pages: 1050-1057
- Section: Luminescence and Laser Physics
- URL: https://journal-vniispk.ru/0367-6765/article/view/279463
- DOI: https://doi.org/10.31857/S0367676524070088
- EDN: https://elibrary.ru/PBPGWR
- ID: 279463
Cite item
Abstract
The second harmonic generation is investigated on microperiodic gratings of nonlinear polarizability photointegrated at volumetric optical poling in alumo- and germanosilicate glasses. The comparison shows the significant impact of nitrogen, phosphorus, and rare-earth element additions. The developed theory of nonlinear-frequency conversion in case of current mechanism allowed to estimate the characteristics and magnitudes of photointegrated nonlinearities in glasses. The sharp dependence of the harmonic generation efficiency on intensity of the component of poling radiation was detected because of the possible influence of photoconductivity, which must be considered when developing perspective samples with photointegrated gratings.
Full Text

About the authors
L. I. Vostrikova
Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences
Author for correspondence.
Email: vostrik@isp.nsc.ru
Russian Federation, Novosibirsk
l. A. Kartashev
Rzhanov Institute of Semiconductor Physics of the Siberian Branch of the of Russian Academy of Sciences
Email: vostrik@isp.nsc.ru
Russian Federation, Novosibirsk
References
- Antonyuk B.P., Antonyuk V.B., Frolov A.A. // Opt. Commun. 2000. V. 174. No. 5—6. P. 427.
- Балакирев М.К., Вострикова Л.И., Смирнов В.А. // Квант. электрон. 2008. Т. 38. № 8. С. 724; Balakirev M.K., Vostrikova L.I., Smirnov V.A. // Quantum Electron. 2008. V. 38. No. 8. P. 724.
- Баскин Э.М., Энтин М.В. // Письма в ЖЭТФ. 1988. Т. 48. № 10. С. 554; Baskin E.M., Entin M.V. // JETP Lett. 1988. V. 48. No. 10. P. 601.
- Kovalev V.M., Sonowal K., Savenko I.G. // Phys. Rev. B. 2021. V. 103. No. 2. Art. No. 024513.
- Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2018. V. 10717. Art. No. 107170E.
- Hickstein D.D., Carlson D.R., Mundoor H. et al. // Nature Photonics. 2019. V. 13. No. 7. P. 494.
- Balakirev M.K., Kityk I.V., Smirnov V.A. et al. // Phys. Rev. A. 2003. V. 67. No. 2. Art. No. 023806.
- Tsutsumi N., Odane C. // J. Opt. Soc. Amer. B. 2003. V. 20. No. 7. P. 1514.
- Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2022. V. 12193. Art. No. 121930O.
- Liu Y.L., Wang W.J., Gao X.X. et al. // J. Atom. Mol. Sci. 2011. V. 2. No. 4. P. 334.
- Smirnov V.A., Vostrikova L.I. // Proc. SPIE. 2018. V. 10717. Art. No. 107170D.
- Nitiss E., Liu T., Grassani D. et al. // ACS Photonics. 2020. V. 7. No. 1. P. 147.
- Вострикова Л.И., Смирнов В.А. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 203; Vostrikova L.I., Smirnov V.A. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 181.
- Porcel M.A.G., Mak J., Taballione C. et al. // Opt. Express. 2017. V. 25. No. 26. P. 33143.
- Reddy A.S.S., Kityk A.V., Jedryka J. et al. // Opt. Mater. 2022. V. 123. Art. No. 111858.
- Вострикова Л.И., Смирнов В.А. // Изв. РАН. Сер. физ. 2015. Т. 79. № 2. С. 198; Vostrikova L.I., Smirnov V.A. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 2. P. 176.
- Балакирев М.К., Вострикова Л.И., Смирнов В.А., Энтин М.В. // Письма в ЖЭТФ. 2004. Т. 80. № 1. С. 32; Balakirev M.K., Vostrikova L.I., Smirnov V.A., Entin M.V. // JETP Lett. 2004. V. 80. No. 1. P. 26.
- Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989. 560 с.
- Мальчукова Е.В., Теруков Е.И. // Изв. РАН. Сер. физ. 2022. Т. 86. № 7. С. 956; Malchukova E.V., Terukov E.I. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 7. P. 797.
- Goutaland F., Jander P., Brocklesby W.S., Dai G. // Opt. Mater. 2003. V. 22. No. 4. P. 383.
Supplementary files
