Influence of the number of granules on the magnetization of multi-core particles
- Autores: Sokolsky S.А.1, Solovyova A.Y.1, Elfimova E.A.1, Ivanov А.О.1
-
Afiliações:
- Ural Federal University
- Edição: Volume 88, Nº 10 (2024)
- Páginas: 1570-1576
- Seção: Physics of magnetic fluids and composite materials based on them
- URL: https://journal-vniispk.ru/0367-6765/article/view/283377
- DOI: https://doi.org/10.31857/S0367676524100117
- EDN: https://elibrary.ru/DSUTVM
- ID: 283377
Citar
Resumo
We investigated the static magnetic response of the multi-core particles (MCP) with a different number of nanocores. The cases of the MCPs containing 7, 8, 32, 33, 123 and 136 granules are considered. Their position remains unchanged in the nodes of a regular cubic lattice, but the magnetic moments can freely rotate inside the cores. The magnetization of the MCPs is determined by computer simulation using the Monte Carlo method and theoretically.
Palavras-chave
Texto integral

Sobre autores
S. Sokolsky
Ural Federal University
Autor responsável pela correspondência
Email: Sokolsky2304@gmail.com
Rússia, Ekaterinburg
A. Solovyova
Ural Federal University
Email: Sokolsky2304@gmail.com
Rússia, Ekaterinburg
E. Elfimova
Ural Federal University
Email: Sokolsky2304@gmail.com
Rússia, Ekaterinburg
А. Ivanov
Ural Federal University
Email: Sokolsky2304@gmail.com
Rússia, Ekaterinburg
Bibliografia
- Долуденко И.М., Хайретдинова Д.Р., Загорский Д.Л. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 321; Doludenko I.M., Khairetdinova D.R., Zagorsky D.L. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 277.
- Алехина Ю.А., Макарова Л.А., Наджарьян Т.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 882; Alekhina Y.A., Makarova L.A., Nadzharyan T.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 801.
- Ivanov A.O., Ludwig F. // Phys. Rev. E. 2020. V. 102. Art. No. 32603.
- Kratz H., Mohtashamdolatshahi A., Eberbeck D. et al. // Nanomaterials E. 2021. No. 11. P. 1532.
- Dutz S., Clement J.H., Eberbeck D. et al. // JMMM E. 2009. V. 321. P. 1501.
- Delgado A., Gallo-Cordova A., Dıaz-Ufano C. et al. // J. Phys. Chem. E. 2023. V. 127. P. 4714.
- Trisnanto S.B., Takemura Y. // J. Appl. Phys. E. 2021. V. 130. Art. No. 064302.
- Laherisheth Z., Parekh K., Upadhyay R.V. // J. Nanofluids. E. 2018. No. 7. P. 292.
- Green L.A., Thuy T.T., Mott D.M. et al. // RSC Advances E. 2014. No. 4. P. 1039.
- Schaller V., Wahnstrom G., Sanz-Velasco A. et al. // Phys. Rev. B. 2009. V. 80. Art. No. 092406.
- Schaller V., Wahnstrom G., Sanz-Velasco A. et al. // JMMM E. 2009. V. 321. P. 1400.
- Kuznetsov A.A. // Phys. Rev. B. 2018. V. 98. Art. No. 144418.
- Kuznetsov A.A., Novak E.V., Pyanzina E.S., Kantorovich S.S. // J. Mol. Liquids. 2022. V. 359. Art. No. 119373.
- Solovyova A.Y., Kuznetsov A.A., Elfimova E.A. // Physica A. 2020. V. 558. Art. No. 124923.
- Бондарев А.В., Пашуева И.М., Ожерельев В.В., Батаронов И.Л. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 924; Bondarev A.V., Pashueva I.M., Ozherelyev V.V., Bataronov I.L. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 841.
- Муртазаев А.К., Ибаев З.Г. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 930; Murtazaev A.K., Ibaev Z.G. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 847.
- Solovyova A.Y., Sokolsky A.A., Ivanov A.O., Elfimova E.A. // Smart Mater. Struct. 2023. V. 32. Art. No. 115005.
Arquivos suplementares
