Shape of magnetic fluid surface near magnetic bodies in constant and alternating magnetic field
- Autores: Simonovsky А.Y.1,2, Zakinyan A.R.2
-
Afiliações:
- North Caucasus Federal University
- Stavropol State Agrarian University
- Edição: Volume 88, Nº 10 (2024)
- Páginas: 1626-1631
- Seção: Microfluidics and ferrohydrodynamics of magnetic colloids
- URL: https://journal-vniispk.ru/0367-6765/article/view/283406
- DOI: https://doi.org/10.31857/S0367676524100191
- EDN: https://elibrary.ru/DSDNQZ
- ID: 283406
Citar
Resumo
The shape of the free surface of a magnetic fluid, which it takes in an external homogeneous magnetic field near solid magnetic bodies, is experimentally investigated. The shape of the magnetic fluid surface in the vicinity of bodies of different basic geometry: cylinder, ball, plate is studied. The pattern of the magnetic fluid surface under the influence of a stationary and alternating magnetic field is considered. It is shown that the shape of the surface essentially depends on the volume of the magnetic fluid, the geometry of the magnetic body and the magnitude of the magnetic field. The obtained results indicate the possibility of purposeful control of the shape of the free surface of magnetic fluid, which may have practical applications.
Texto integral

Sobre autores
А. Simonovsky
North Caucasus Federal University; Stavropol State Agrarian University
Autor responsável pela correspondência
Email: simonovchkij@mail.ru
Rússia, Stavropol; Stavropol
A. Zakinyan
Stavropol State Agrarian University
Email: simonovchkij@mail.ru
Rússia, Stavropol
Bibliografia
- Гареев К.Г., Непомнящая Э.К. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 990; Gareev K.G., Nepomnyashchaya E.K. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. Р. 904.
- Richter R., Lange A. // In: Lecture Notes on Physics. V. 763. Berlin, Heidelberg: Springer, 2009.
- Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshov E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. Р. 295.
- Zakinyan A., Mkrtchyan L., Dikansky Y. // Eur. J. Mech. B. 2016. V. 56. P. 172.
- Gogosov V.V., Grishanina O.A., Kiryushin V.V., Simonovskii A.Ya. // Magnetohydrodynamics. 1998. V. 34. P. 35.
- Naletova V.A., Turkov V.A., Pelevina D.A. et al. // J. Magn. Magn. Mater. 2012. V. 324. P. 1253.
- Bashtovoi V., Motsar A., Naletova V. et al. // Magnetohydrodynamics. 2013. V. 49. P. 592.
- Sharova O.A., Merkulov D.I., Pelevina D.A. et al. // Phys. Fluids. 2021. V. 33. Art. No. 087107.
- Huang L., Hädrich T., Michelsacm D.L. // Trans. Graph. 2019. V. 38. P. 93.
- Ando B., Ascia A., Baglio S., Pitrone N. // IEEE Trans. Instrum. Meas. 2009. V. 58. P. 3232.
- Greivell N.E., Hannaford B. // IEEE Trans. Biomed. Eng. 1997. V. 44. P. 129.
- Sun R., Li D. // J. Magn. Magn. Mater. 2020. V. 497. Art. No. 165960.
- Gogosov V.V., Simonovskii A.Ya., Smolkin R.D. // J. Magn. Magn. Mater. 1990. V. 85. P. 227.
- Khoshmehr H.H., Saboonchi A., Shafii M.B., Jahani N. // Appl. Therm. Eng. 2014. V. 64. P. 331.
- Kole M., Khandekar S. // J. Magn. Magn. Mater. 2021. V. 537. Art. No. 168222.
Arquivos suplementares
