Analysis of the possibility of increasing the degree of randomness of noise using a continuous wavelet transform on the example of a sequence of numbers generated by an optical random noise generator
- Autores: Sibgatullin M.E.1,2, Mavkov D.A.1, Gilyazov L.R.1, Arslanov N.M.1
-
Afiliações:
- Kazan National Research Technical University
- Tatarstan Academy of Sciences
- Edição: Volume 88, Nº 12 (2024)
- Páginas: 1951-1956
- Seção: Nanooptics, photonics and coherent spectroscopy
- URL: https://journal-vniispk.ru/0367-6765/article/view/286545
- DOI: https://doi.org/10.31857/S0367676524120174
- EDN: https://elibrary.ru/EVKPBO
- ID: 286545
Citar
Resumo
The possibilities of controlling the parameters of random number sequences using a continuous wavelet transform are investigated. It is shown that changing the energy of the scales of the continuous wavelet transform can increase the percentage of passing the NIST LongestRun, FFT and Runs tests. The possibility of increasing the percentage of passing tests has been demonstrated for various sizes of the experimental sequence of random numbers under study.
Texto integral

Sobre autores
M. Sibgatullin
Kazan National Research Technical University; Tatarstan Academy of Sciences
Autor responsável pela correspondência
Email: sibmans@mail.ru
Kazan Quantum Centre
Rússia, Kazan; KazanD. Mavkov
Kazan National Research Technical University
Email: sibmans@mail.ru
Kazan Quantum Centre
Rússia, KazanL. Gilyazov
Kazan National Research Technical University
Email: sibmans@mail.ru
Kazan Quantum Centre
Rússia, KazanN. Arslanov
Kazan National Research Technical University
Email: sibmans@mail.ru
Kazan Quantum Centre
Rússia, KazanBibliografia
- Herrero-Collantes M., Garcia-Escartin J.C. // Rev. Modern Phys. 2017. V. 89. No. 1. Art. No. 015004.
- Mannalatha V., Mishra S., Pathak A. // Quantum Inf. Process. 2023. V. 22. Art. No. 439.
- Kim T., Lee S., Yun S. et al. // Proc. 23rd Int. Conf. WISA 2022 (Jeju Island, 2022). P. 277.
- Petrie C.S., Connelly J.A. // IEEE TCAS-I. 2000. V. 47. No. 5. P. 615.
- Katsoprinakis G., Polis M., Tavernarakis A. et al. // Phys. Rev. A. 2008. V. 77. Art. No. 054101.
- Argillander J., Alarcón A., Xavier G. // J. Optics. 2022. V. 24. Art. No. 064010.
- Khanmohammadi A., Enne R., Hofbauer M. et al. // IEEE Photonics J. 2015. V. 7. No. 5. P. 1.
- Grosshans F., Van Assche G., Wenger J. et al. // Nature. 2003. V. 421. P. 238.
- Symul T., Assad S.M., Lam P.K. // Appl. Phys. Lett. 2011. V. 98. Art. No. 231103.
- Балыгин К.А., Кулик С.П., Молотков С.Н. // Письма в ЖЭТФ. 2024. Т. 119. № 7. С. 533, Balygin K.A., Kulik S.P., Molotkov S.N. // JETP Lett. 2024. V. 119. No. 7. P. 538.
- Bikos A., Nastou P., Petroudis G., Stamatiou Y. // Criptography. 2023. V. 7. No. 4. P. 54.
- Сибгатуллин М.Э., Гилязов Л.Р., Мавков Д.А., Арсланов Н.М. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1796, Sibgatullin M.E., Gilyazov L.R., Mavkov D.A., Arslanov N.M. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1869.
- Strydom C., Soleymani S., Özdemir Ş.K., Tame M.S. // New J. Phys. 2024. No. 26. Art. No. 043002.
- Евстифеев Е.В., Москаленко О.И. // Изв. РАН. Сер. физ. 2020. Т. 84. № 2. С. 300, Evstifeev E.V., Moskalenko O.I .// Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 2. P. 230.
- Захаров В.М., Шалагин С.В., Гумиров А.И. // Вест. Дагестан. гос. ун-та. Сер. 1. Естеств. науки. 2023. Т. 38. № 3. С. 28.
- Obadi A.B., Zeghid M., Kan P.L.E. // EEE Access. 2022. V. 10. P. 126767.
Arquivos suplementares
