Low frequency properties of a silicon-based plasmonic detector

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The properties of a silicon-based plasmonic detector of electromagnetic radiation were examined in the lowfrequency region (0.1-20 GHz). The detector’s sensitive element was embedded within a matched coplanar waveguide, through which the electromagnetic radiation was conveyed. The dependence of the DC voltage observed at the detector’s output on the frequency of the incident radiation was measured. The detector’s power characteristics were measured, and the threshold radiation power at which the detector transitions into a nonlinear regime was determined.

About the authors

A. V Shchepetilnikov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: shchepetilnikov@issp.ac.ru
Chernogolovka, Russia

A. R Khisameeva

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

Ya. V Fedotova

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

A. A Dremin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

I. V Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

References

  1. Baydin A., Makihara T., Peraca N.M., Kono J. // Front. Optoelectron. 2021. V. 14. P. 110.
  2. Miyamoto T., Kondo A., Inaba T. et al. // Nature Commun. 2023. V. 14. No. 1. P. 6229.
  3. Mertens M., Chavoshi M., Peytral-Rieu O. et al. // IEEE Microwave Mag. 2023. V. 24. No. 4. P. 49.
  4. Wang P., Lou J., Fang G., Chang C. // IEEE Trans. Microwave Theory Tech. 2022. V. 70. No. 11. P. 5117.
  5. Pearson J.C., Drouin B.J., Yu S. // IEEE J. Microwaves. 2021. V. 1. No. 1. P. 43.
  6. Tamburini F., Licata I. // Particles. 2024. V. 7. No. 3. P. 576.
  7. Chen Z., Ma X., Zhang B. et al. // China Commun. 2019. V. 16. No. 2. P. 1.
  8. Yang X., Liu Y., Liu W. et al. // Trends Biotechnol. 2016. V. 34. No. 10. P. 810.
  9. Khan S., Acharyya A., Inokawa H. et al. // Photonics. 2023. V. 10. No. 7. P. 800.
  10. Tzydynzhapov G., Gusikhin P., Muravev V., Dremin A. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 632.
  11. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // Appl. Optics. 2021. V. 60. No. 33. P. 10448.
  12. Shchepetilnikov A.V., Gusikhin P.A., Muravev V.M. et al. // J. Infrared Millim. Terahertz Waves. 2020. V. 41. No. 6. P. 655.
  13. Jelali M., Papadopoulos K. // Processes. 2024. V. 12. No. 4. P. 712.
  14. Nsengiyumva W., Zhong Sh., Zheng L. et al. // IEEE Trans. Instrum. Meas. 2023.
  15. Dyakonov M.I., Shur M.S. // IEEE Trans. Electron Devices. 1996. V. 43. No. 10. P. 1640.
  16. Lu J.Q., Shur M.S. // Appl. Phys. Lett. 2001. V. 78. No. 17. P. 2587.
  17. Fetterman H.R., Clifton B.J., Tannenwald P.E. et al. // Appl. Phys. Lett. 1974. V. 24. No. 2. P. 70.
  18. Karasik B.S., Sergeev A.V., Prober D.E. //IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. No. 1. P. 97.
  19. Whatmore R.W. // Rep. Progr. Phys. 1986. V. 49. No. 12. P. 1335.
  20. Fernandes L.O.T., Kaufmann P., Marcon R. et al. // Proc. XXX URSI General Assembly. (Istanbul, 2011). P. 1.
  21. Muravev V.M., Gusikhin P.A., Andreev I.V., Kukushkin I.V. // Phys. Rev. Lett. 2015. V. 114. No. 10. Art. No. 106805.
  22. Muravev V.M., Gusikhin P.A., Zarezin A.M. et al. // Phys. Rev. B. 2019. V. 99. No. 24. Art. No. 241406(R).
  23. Muravev V.M., Kukushkin I.V. // Appl. Phys. Lett. 2012. V. 100. No. 8. Art. No. 082102.
  24. Muravev V.M., Solov’ev V.V., Fortunatov A.A. et al. // JETP Lett. 2016. V. 103. No. 12. P. 792.
  25. Khisameeva A.R., Shchepetilnikov A.V., Fedotova Ya.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 2. P. 145.
  26. Shchepetilnikov A.V., Kaysin B.D., Gusikhin P.A. et al. // Opt. Quantum Electron. 2019. V. 51. No. 12. P. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).