Gold nanoparticles as SERS-substrates for MTT assay

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Several variants of gold nanoparticles were proposed for the detection of formazan formed because of enzymatic reduction of the MTT reagent by E. coli enzymes. It is shown that gold nanostars coated with a micellar stabilizer are the most promising SERS-substrate for the detection of formazan in biological mixtures, reducing the required titer of bacteria by at least an order of magnitude.

About the authors

V. A Mushenkov

Lomonosov Moscow State University

Email: vladimir.mushenkov@mail.ru
Moscow, Russia

A. M Burov

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences

Saratov, Russia

V. I Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Chernogolovka, Russia

E. G Zavyalova

Lomonosov Moscow State University

Moscow, Russia

References

  1. Cook M.A., Wright G.D. // Sci. Transl. Med. 2020. V. 14. No. 657. Art. No. eabo7793.
  2. Prospero E., Barbadoro P., Marigliano A. et al. // Epidemiol. Infect. 2011. V. 139. No. 9. P. 1326.
  3. Davies J., Davies D. // Microbiol. Mol. Biol. Rev. 2010. V. 74. No. 3. P. 417.
  4. Walsh T.R., Gales A.C., Laxminarayan R. et al. // PLoS Med. 2023. V. 20. No. 7. Art. No. e1004264.
  5. Kim C., Holm M., Frost I. et al. // BMJ Glob Health. 2023. V. 8. No. 7. Art. No. e011341. https://apo.org.au/node/63983.
  6. Zasowski E.J., Bassetti M., Blasi F. et al. // Chest. 2020. V. 158. No. 3. P. 929.
  7. Autore G., Neglia C., Di Costanzo M. et al. // Children. 2022. V. 9. No. 2. P. 128.
  8. Garnacho-Montero J., Ortiz-Leyba C., HerreraMelero I. et al. // J. Antimicrob. Chemother. 2008. V. 61. No. 2. P. 436.
  9. Syal K., Mo M., Yu H. et al. // Theranostics. 2017. V. 7. No. 7. P. 1795.
  10. Puttaswamy S., Gupta S.K., Regunath H. et al. // Arch. Clin. Microbiol. 2018. V. 9. No. 3. P. 83.
  11. Steingart K.R., Sohn H., Schiller I. et al. // Cochrane Database Syst. Rev. 2014. V. 2014. No. 1. Art. No. CD009593.
  12. Burckhardt I., Zimmermann S. // Front. Microbiol. 2018. V. 9. P. 1744.
  13. Khan Z.A., Siddiqui M.F., Park S. // Diagnostics. 2019. V. 9. No. 2. P. 49.
  14. Berridge M.V., Herst P.M., Tan A.S. // Biotechnol. Annu. Rev. 2005. V. 11. P. 127.
  15. Kumar P., Nagarajan A., Uchil P.D. // Cold Spring Harb Protoc. 2018. V. 2018. No. 6. Art. No. pdbprot095505.
  16. Grela E., Kozlowska J., Grabowiecka A. // Acta Histochem. 2018. V. 120. No. 4. P. 303.
  17. Shi L., Ge H.-M., Tan S.-H. et al. // Eur. J. Med. Chem. 2007. V. 42. No. 4. P. 558.
  18. Nuryastuti T., van der Mei H.C., Busscher H.J. et al. // Appl. Environ. Microbiol. 2009. V. 75. No. 21. P. 6850.
  19. Schillaci D., Arizza V., Dayton T. et al. // Lett. Appl. Microbiol. 2008. V. 47. No. 5. P. 433.
  20. Grela E., Kozlowska J., Grabowiecka A. // Acta Histochem. 2018. V. 120. No. 4. P. 303.
  21. https://www.edmundoptics.com/knowledgecenter/application-notes/lasers/basic-principles-oframan-scattering-and-spectroscopy/.
  22. Das R.S., Agrawal Y.K. // Vibr. Spectrosc. 2011. V. 57. No. 2. P. 163.
  23. Harvey S.D., Vucelick M.E., Lee R.N. et al. // Forensic. Sci. Int. 2002. V. 125. No. 1. P. 12.
  24. Hodges C.M., Akhavan J. // Spectrochim. Acta A. 1990. V. 46. No. 2. P. 303.
  25. Ianoul A., Coleman T., Asher S.A. // Analyt. Chem. 2002. V. 74. No. 6. P. 1458.
  26. Yang D., Ying Y. // Appl. Spectrosc. Rev. 2011. V. 46. No. 7. P. 539.
  27. Depciuch J., Kaznowska E., Zawlik I. et al. // Appl. Spectrosc. 2016. V. 70. No. 2. P. 251.
  28. Devitt G., Howard K., Mudher A. et al. // ACS Chem. Neurosci. 2018. V. 9. No. 3. P. 404.
  29. MacRitchie N., Grassia G., Noonan J. et al. // Heart. 2018. V. 104. No. 6. P. 460.
  30. https://www.promega.com.br/resources/pubhub/isyour-mtt-assay-really-the-best-choice.
  31. Hering K., Cialla D., Ackermann K. et al. // Analyt. Bioanalyt. Chem. 2008. V. 390. P. 113.
  32. Mao Z., Liu Z., Chen L. et al. // Analyt. Chem. 2013. V. 85. No. 15. P. 7361.
  33. Robert B. // Photosynth. Res. 2009. V. 101. P. 147.
  34. Gerlier D., Thomasset N. // J. Immunol. Meth. 1986. V. 94. No. 1–2. P. 57.
  35. Eilers P.H.C. // Analyt. Chem. 2003. V. 75. No. 14. P. 3631.
  36. Baek S.-J., Park A., Ahn Y.-J. et al. // Analyst. 2015. V. 140. No. 1. P. 250.
  37. Gribanyov D.A., Rudakova E.V., Zavyalova E.G. // Bull. Russ. Acad. Sci. Phys 2023. V. 87. No. 2. P. 165.
  38. Zhdanov G.A., Gribanyov D.A., Gambaryan A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 4. P. 434.
  39. Мушенков В.А., Лукьянов Д.А., Мещерякова Н.Ф. и др. // Молек. биол. 2024. Т. 58. № 6. С. 1031.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).