Bragg resonances in the yttrium iron garnet – platinum – yttrium iron garnet layered structure
- Авторлар: Lobanov N.D.1, Matveev O.V.1, Morozova M.A.1
-
Мекемелер:
- Saratov State National Research University
- Шығарылым: Том 88, № 2 (2024)
- Беттер: 288-294
- Бөлім: Wave Phenomena: Physics and Applications
- URL: https://journal-vniispk.ru/0367-6765/article/view/266127
- DOI: https://doi.org/10.31857/S0367676524020214
- EDN: https://elibrary.ru/RQWPYX
- ID: 266127
Дәйексөз келтіру
Аннотация
We studied theoretically the interaction between the spin current in a conductor with a strong spin-orbit coupling (platinum, Pt) and the spin wave in yttrium iron garnet ferromagnetic layers (YIG) with periodic thickness modulation under conditions of Bragg resonances and interlayer coupling. It is shown that in the YIG/Pt/YIG sandwich structure the conditions for two Bragg resonances in the first Brillouin area in the spin wave spectrum are fulfilled. The spin current in Pt allows frequency tuning of the resonances and control the depth of the spin wave band gap corresponding to the resonance conditions.
Негізгі сөздер
Толық мәтін

Авторлар туралы
N. Lobanov
Saratov State National Research University
Хат алмасуға жауапты Автор.
Email: nl_17@mail.ru
Ресей, Saratov
O. Matveev
Saratov State National Research University
Email: nl_17@mail.ru
Ресей, Saratov
M. Morozova
Saratov State National Research University
Email: nl_17@mail.ru
Ресей, Saratov
Әдебиет тізімі
- Chumak A.V., Vasyuchka V.I., Serga A.A. et al. // Nature Physics. 2015. V. 11. P. 453.
- Баранов П.Г., Калашникова А.М., Козуб В.И. и др. // УФН. 2019. Т. 189. С. 849; Baranov P.G., Kalashnikova A.M., Kozub V.I. et al. // Phys. Usp. 2019. V. 62. P. 795.
- Brataas A., van Wees B., Klein O. et al. // Phys. Reports. 2020. V. 885. P. 1.
- Demidov V.E., Urazhdin S., Anane A. et al. // J. Appl. Phys. 2020. V. 127. Art. No. 170901.
- Zhou Y., Jiao H., Chen Y.T. et al. // Phys. Rev. B. 2013. V. 88. Art. No. 184403.
- Ando K., Takahashi S., Harii K. et al. // Phys. Rev. Lett. 2008. V. 101. Art. No. 036601.
- Demidov V.E., Urazhdin S., Edwards E.R.J., Demokritov S.O. // Appl. Phys. Lett. 2011. V. 99. Art. No. 172501.
- Wang X G., Guo G.H., Berakdar J. // Nature Commun. 2020. V. 11. P. 5663.
- Temnaya O.S., Safin A.R., Kalyabin D.V. et al. // Phys. Rev. Appl. 2022. V. 18. Art. No. 014003.
- Wang X.G., Schulz D., Guo G.H., Berakdar J. // Phys. Rev. Appl. 2022. V. 18. Art. No. 024080.
- Chumak A.V., Serga A.A., Hillebrands B. // J. Physics D. 2017. V. 50. Art. No. 244001.
- Morozova M.A., Sharaevskaya A. Yu., Sadovnikov A.V. et al. // J. Appl. Phys. 2016. V. 120. Art. No. 223901.
- Морозова М.А., Лобанов Н.Д., Матвеев О.В. и др. // Письма в ЖЭТФ. 2022. Т. 115. С. 793; Morozova M.A., Lobanov N.D., Matveev O.V. et al. // JETP Lett. 2022. V. 115. P. 742.
- Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. Магнитостатические волны в электронике сверхвысоких частот. Саратов: Изд-во СГУ, 1993.
- Ruderman M.A., Kittel C. // Phys. Rev. 1954. V. 96. P. 99.
- Marcuse D. Light transmission optics. Bell Laboratory Series. 1972.
- Kalinikos B.A., Slavin A.N. // J. Phys. Cond. Matter. 1986. V. 19. P. 7013.
- Qin H., Hämäläinen S.J., Arjas K. et al. // Phys. Rev. B. 2018. V. 98. Art. No. 224422.
Қосымша файлдар
