Spatial coherence of exciton-polaritoniс Bose‒Einstein condensates
- Autores: Kuznetsova N.V.1, Makarov D.V.1, Asriyan N.A.2, Elistratov A.A.2, Lozovik Y.E.3,4
-
Afiliações:
- Ilyichev Pacific Oceanological Institute of the Far East Branch of the Russian Academy of Sciences
- Dukhov Research Institute of Automatics
- Institute of Spectroscopy of the Russian Academy of Sciences
- Higher School of Economics
- Edição: Volume 88, Nº 6 (2024)
- Páginas: 889-895
- Seção: Quantum Optics and Coherent Spectroscopy
- URL: https://journal-vniispk.ru/0367-6765/article/view/276167
- DOI: https://doi.org/10.31857/S0367676524060074
- EDN: https://elibrary.ru/PHGQXF
- ID: 276167
Citar
Resumo
Dynamics of exciton-polariton Bose‒Einstein condensate in an optical microcavity is considered. A novel version of stochastic Gross‒Pitaevsky equation for description of condensate evolution under non-Markovian interaction with environment is proposed. Using the proposed version, analysis of condensate dynamics for various temperatures is carried out. The phase transition from a homogeneous to fragmented condensate state near temperature of 15 K is found. This phase transition is accompanied by drop of condensate density and decrease of correlation length. It is found that correlation length oscillates with time for the temperature of 10 K. The results obtained indicate the necessity to take into account non-Markovianity of condensate interaction with the excitonic reservoir.
Sobre autores
N. Kuznetsova
Ilyichev Pacific Oceanological Institute of the Far East Branch of the Russian Academy of Sciences
Email: makarov@poi.dvo.ru
Rússia, Vladivostok
D. Makarov
Ilyichev Pacific Oceanological Institute of the Far East Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: makarov@poi.dvo.ru
Rússia, Vladivostok
N. Asriyan
Dukhov Research Institute of Automatics
Email: makarov@poi.dvo.ru
Rússia, Moscow
A. Elistratov
Dukhov Research Institute of Automatics
Email: makarov@poi.dvo.ru
Rússia, Moscow
Yu. Lozovik
Institute of Spectroscopy of the Russian Academy of Sciences; Higher School of Economics
Email: makarov@poi.dvo.ru
Rússia, Moscow; Moscow
Bibliografia
- Kasprzak J., Richard M., Kundermann S. et al. // Nature. 2006. V. 443. P. 409.
- Balili R., Hartwell V., Snoke D. et al. // Science. 2007. V. 316. No. 5827. P. 1007.
- Deng H., Haug H., Yamamoto Y. // Rev. Mod. Phys. 2010. V. 82. No. 2. P. 1489.
- Тимофеев В.Б. // Физ. и техн. полупроводников. 2012. Т. 46. № 7. С. 865; Timofeev V.B. // Semiconductors. 2012. V. 46. No. 7. P. 865.
- Воронова Н.С., Лозовик Ю.Е. // Письма в ЖЭТФ. 2018. Т. 108. № 12. С. 805; Voronova N.S., Lozovik Yu.E. // JETP Lett. 2018. V. 108. № 12. P. 791.
- Гаврилов С.С. // УФН. 2020. Т. 190. № 2. С. 137; Gavrilov S.S. // Phys. Usp. 2020. V. 63. No. 2. P. 123.
- Седова И.Е., Седов Е.С., Аракелян С.М., Кавокин А.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 12. С. 1712; Sedova I.E., Sedov E.S., Arakelian S.M., Kavokin A.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 12. P. 1453.
- Сейсян Р.П., Ваганов С.А. // ФТП. 2020. Т. 54. № 4. С. 327; Seisyan R.P., Vaganov S.A. // Semiconductors. 2020. V. 54. P. 399.
- Васильева О.Ф., Зинган А.П., Васильев В.В. // Опт. и спектроск. 2022. Т. 130. № 12. С. 1840; Vasilieva O.F., Zingan A.P., Vasiliev V.V. // Opt. Spectrosc. 2022. V. 130. No. 12. P. 1567.
- Chen X., Alnatah H., Mao D. // Nano Lett. 2023. V. 23. No. 20. P. 9538.
- Лозовик Ю.Е., Семенов А.Г. // Теор. и матем. физ. 2008. № 2. С. 372; Lozovik Yu.E., Semenov A.G. // Theor. Math. Phys. 2008. No. 2. P. 154.
- Немировский С.К. // Квант. электрон. 2020. Т. 50. № 6. С. 556; Nemirovskii S.K. // Quantum Electron. V. 49. No. 5. P. 436.
- Лозовик Ю.Е., Семенов А.Г., Вилландер М. // Письма в ЖЭТФ. 2006. Т. 84. № 3. С. 176; Lozovik Yu.E., Semenov A.G., Willander M. // JETP Lett. 2006. V. 84. No. 3. P. 146.
- Лозовик Ю.Е., Семенов А.Г. // Письма в ЖЭТФ. 2007. Т. 86. № 1. С. 30; Lozovik Y.E., Semenov A.G. // JETP Lett. 2007. V. 86. P. 28.
- Alliluev A.D., Makarov D.V. // J. Russ. Laser. Res. 2022. V. 43. No. 1. P. 71.
- De Vega I., Alonso D. // Rev. Mod. Phys. 2017. V. 89. No. 1. Art. No. 015001.
- Elistratov A.A., Lozovik Yu.E. // Phys. Rev. B. 2018. V. 97. Art. No. 014525.
- Makarov D.V., Elistratov A.A., Lozovik Yu.E. // Phys. Lett. A. 2020. V. 384. Art. No. 126942.
- Asriyan N.A., Elistratov A.A., Lozovik Yu.E // Quantum. 2023. V. 7. P. 1144.
- De Giorgi M., Ballarini D., Cazzato P. et al. // Phys. Rev. Lett. 2014. V. 112. Art. No. 113602.
- Opala A., Pieczarka M., Matuszewski M. // Phys. Rev. B. 2018. V. 98. No. 19. P. 5312.
- Tian C., Chen L., Zhang Y. et al. // Nano Lett. 2022. V. 22. No. 7. P. 3026.
- Alliluev A.D., Makarov D.V., Asriyan N.A. et al. // Phys. Lett. A. 2022. V. 453. Art. No. 128492.
- Alliluev A.D., Makarov D.V., Asriyan N.A. et al. // J. Low Temp. Phys. 2024. V. 214. P. 331.
- Deligiannis K., Squizzato D., Minguzzi A., Canet L. // Europhys. Lett. 2020. Art. No. 67004.
- Berry M.V. // J. Physics A. 1977. V. 10. No. 12. P. 2083.
- Максимов Д.Н., Садреев А.Ф. // Письма в ЖЭТФ. 2008. Т. 86. № 9. С. 584; Maksimov D.N., Sadreev A.F. // JETP Lett. 2008. V. 86. No. 9. P. 584.
- Li X. // Phys. Lett. A. 2021. V. 387. Art. No. 127036.
Arquivos suplementares
