Extreme accuracy of the autocollimator-null-indicator

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Improving the accuracy of measurements in dynamic goniometry is inextricably linked with achieving the ultimate accuracy of the optical null indicator. This device is part of angle measuring devices operating on the principle of a dynamic goniometer. The autocollimator-null-indicator, when its optical axis coincides with the normal to the controlled reflecting surface, generates an electric pulse, which is used to read the readings of the angular scale of the dynamic goniometer. The ultimate accuracy of the autocollimator-null-indicator is determined by its random error. The random error of measurements of the constant angular position of a reflecting mirror at different times of the day was experimentally studied. It is shown that external noises prevail during daytime measurements – various vibrations, air and external lighting fluctuations, which depend on the distance between the autocollimator-null-indicator and the mirror, and during nighttime measurements the influence of external effects on the measurement results is minimal, which made it possible to obtain the measurement error at night at the flicker noise level. The experimental data are analyzed using the methods of mathematical statistics, Allan variance and wavelet analysis. It is determined that the arrays of random variables characterizing the random error are non-stationary. The minimum value of the random error of the autocollimator-null-indicator was 0.001″.The presented results are of interest to specialists developing and using optoelectronic devices based on the autocollimator.

作者简介

E. Ivashchenko

Saint Petersburg Electrotechnical University “LETI”

Email: emivashenko@etu.ru
ORCID iD: 0000-0003-3645-4402

R. Larichev

Saint Petersburg Electrotechnical University “LETI”

Email: ralarichev@etu.ru
ORCID iD: 0000-0002-7390-2780

P. Pavlov

Saint Petersburg Electrotechnical University “LETI”

Email: pavl-petr@yandex.ru
ORCID iD: 0000-0002-6254-3145

参考

  1. Burnashev M. N., Pavlov P. A., Filatov Yu. V. Development of Precision laser goniometer systems. Quantum Electronics, 43(2), 130–138 (2013). https://doi.org/10.1070/QE2013v043n02ABEH015045
  2. Larichev R. A., Filatov Yu. V. A model of angle measurement using an autocollimator and optical polygon. Photonics, 10(12), 1359 (2023). https://doi.org/10.3390/photonics10121359
  3. Венедиктов В. Ю., Ньямверу Б., Ларичев Р. А. и др. Оптические нуль-индикаторы для гониометрических систем: обзор. Фотоника, 16(6), 464–474 (2022). https://doi.org/10.22184/1993-7296.FRos.2022.16.6.464.474
  4. Потенциальная точность измерений. Под ред. В. А. Слаева. НПО «Профессионал», Cанкт-Петербург (2005).
  5. Ишанин Г. Г., Челибанов В. П. Приёмники оптического излучения. Лань, Санкт-Петербург (2022).
  6. Якимов А. В. Физика шумов и флуктуаций параметров. Нижегородский государственный университет, Нижний Новгород (2013).
  7. Bendat J. S., Piersol A. G., Random data analysis and measurement procedures. John Wiley & Sons, Inc. (1986).
  8. Allan D. W., Statistics of atomic frequency standards. Proceeding IEEE, 54(2), 221–230 (1966). http://dx.doi.org/10.1109/PROC.1966.4634
  9. Mary Beth Ruskai, Gregory Beylkin et al. Wavelets and their Applications, Jones and Barlett Publisher, Boston, (1992).
  10. Яковлев А. Н. Введение в вейвлет-преобразования. Издательство НГТУ, Новосибирск (2003).
  11. Малла С. Вейвлеты в обработке сигналов. Мир, Москва (2005).
  12. Мацаев А. С. Фликкер-шум. Особенности, разнообразие и управление. Журнал радиоэлектроники, (10), 1–17 (2020). https://doi.org/10.30898/1684-1719.2020.10.7
  13. Качанов Б. О., Ахмедова С. А., Тукатарев Н. А. и др. Моделирование фликкер-шума методом суперпозиции нормальных стационарных процессов. Гироскопия и навигация, 26(2), 59–76 (2018). https://doi.org/10.17285/0869-7035.2018.26.2.059-076
  14. Королев А. Н., Лукин А. Я., Филатов Ю. В., Венедиктов В. Ю. Матричная технология измерений. Точность измерения координат элементов и контроль фотошаблонов. Оптический журнал. 91(3), 115–123 (2024). https://doi.org/10.17586/1023-5086-2024-91-03-115-123

补充文件

附件文件
动作
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».