Time decay estimates for solutions of the Cauchy problem for the modified Kawahara equation
- Authors: Naumkin P.I.1
-
Affiliations:
- National Autonomous University of Mexico, Center of Mathematical Sciences
- Issue: Vol 210, No 5 (2019)
- Pages: 72-108
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133273
- DOI: https://doi.org/10.4213/sm8978
- ID: 133273
Cite item
Abstract
About the authors
Pavel Ivanovich Naumkin
National Autonomous University of Mexico, Center of Mathematical Sciences
Email: pavelni@matmor.unam.mx
References
- Shang Bin Cui, Dong Gao Deng, Shuang Ping Tao, “Global existence of solutions for the Cauchy problem of the Kawahara equation with $L^{2}$ initial data”, Acta Math. Sin. (Engl. Ser.), 22:5 (2006), 1457–1466
- М. В. Федорюк, Асимптотика: интегралы и ряды, Наука, М., 1987, 544 с.
- N. Hayashi, “Global existence of small solutions to quadratic nonlinear Schrödinger equations”, Comm. Partial Differential Equations, 18:7-8 (1993), 1109–1124
- N. Hayashi, P. I. Naumkin, “The initial value problem for the cubic nonlinear Klein–Gordon equation”, Z. Angew. Math. Phys., 59:6 (2008), 1002–1028
- N. Hayashi, P. I. Naumkin, “Factorization technique for the fourth-order nonlinear Schrödinger equation”, Z. Angew. Math. Phys., 66:5 (2015), 2343–2377
- N. Hayashi, P. I. Naumkin, “On the inhomogeneous fourth-order nonlinear Schrödinger equation”, J. Math. Phys., 56:9 (2015), 093502, 25 pp.
- N. Hayashi, P. I. Naumkin, “Factorization technique for the modified Korteweg–de Vries equation”, SUT J. Math., 52:1 (2016), 49–95
- N. Hayashi, T. Ozawa, “Scattering theory in the weighted $L^2(mathbf R^{n})$ spaces for some Schrödinger equations”, Ann. Inst. H. Poincare Phys. Theor., 48:1 (1988), 17–37
- A. T. Il'ichev, A. Yu. Semenov, “Stability of solitary waves in dispersive media described by a fifth-order evolution equation”, Theoret. Comput. Fluid Dyn., 3:6 (1992), 307–326
- T. Kawahara, “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Japan, 33:1 (1972), 260–264
- S. Kichenassamy, P. J. Olver, “Existence and nonexistence of solitary wave solutions to higher-order model evolution equations”, SIAM J. Math. Anal., 23:5 (1992), 1141–1166
- S. Klainerman, “Long-time behavior of solutions to nonlinear evolution equations”, Arch. Rational Mech. Anal., 78:1 (1982), 73–98
- S. Klainerman, G. Ponce, “Global, small amplitude solutions to nonlinear evolution equations”, Comm. Pure Appl. Math., 36:1 (1983), 133–141
- I. P. Naumkin, “Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential”, J. Math. Phys., 57:5 (2016), 051501, 31 pp.
- I. P. Naumkin, “Initial-boundary value problem for the one dimensional Thirring model”, J. Differential Equations, 261:8 (2016), 4486–4523
- E. M. Stein, R. Shakarchi, Functional analysis. Introduction to further topics in analysis, Princeton Lect. Anal., 4, Princeton Univ. Press, Princeton, NJ, 2011, xviii+423 pp.
- А. Г. Свешников, А. Б. Альшин, М. О. Корпусов, Ю. Д. Плетнер, Линейные и нелинейные уравнения соболевского типа, Физматлит, М., 2007, 734 с.
- Hua Wang, Shang Bin Cui, Dong Gao Deng, “Global existence of solutions for the Kawahara equation in Sobolev spaces of negative indices”, Acta Math. Sin. (Engl. Ser.), 23:8 (2007), 1435–1446
- Guixiang Xu, “The Cauchy problem of the modified Kawahara equation”, J. Partial Differential Equations, 19:2 (2006), 126–146
Supplementary files
