Антисимметричные парамодулярные формы веса 3
- Авторы: Гриценко В.А.1,2, Ванг Х.1
-
Учреждения:
- Université de Lille, Laboratoire Paul Painlevé
- Национальный исследовательский университет "Высшая школа экономики"
- Выпуск: Том 210, № 12 (2019)
- Страницы: 43-66
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0368-8666/article/view/133299
- DOI: https://doi.org/10.4213/sm9241
- ID: 133299
Цитировать
Аннотация
Об авторах
Валерий Алексеевич Гриценко
Université de Lille, Laboratoire Paul Painlevé; Национальный исследовательский университет "Высшая школа экономики"
Хаову Ванг
Université de Lille, Laboratoire Paul Painlevé
Email: yanis19931007@gmail.com
Список литературы
- A. Ash, P. E. Gunnells, M. McConnell, “Cohomology of congruence subgroups of $operatorname{SL}_4(mathbb Z)$. III”, Math. Comp., 79:271 (2010), 1811–1831
- R. E. Borcherds, “Automorphic forms on $operatorname{O}_{s+2,2}(mathbb R)$ and infinite products”, Invent. Math., 120:1 (1995), 161–213
- R. E. Borcherds, “Automorphic forms with singularities on Grassmannians”, Invent. Math., 132:3 (1998), 491–562
- Н. Бурбаки, Группы и алгебры Ли, Гл. IV–VI. Группы Кокстера и системы Титса. Группы, порожденные отражениями. Системы корней, Элементы математики, Мир, М., 1972, 334 с.
- J. Breeding II, C. Poor, D. S. Yuen, “Computations of spaces of paramodular forms of general level”, J. Korean Math. Soc., 53:3 (2016), 645–689
- A. Brumer, K. Kramer, “Paramodular abelian varieties of odd conductor”, Trans. Amer. Math. Soc., 366:5 (2014), 2463–2516
- F. Clery, V. Gritsenko, “Modular forms of orthogonal type and Jacobi theta-series”, Abh. Math. Semin. Univ. Hambg., 83:2 (2013), 187–217
- M. Eichler, D. Zagier, The theory of Jacobi forms, Progr. Math., 55, Birkhäuser Boston, Inc., Boston, MA, 1985, v+148 pp.
- E. Freitag, Siegelsche Modulfunktionen, Grundlehren Math. Wiss., 254, Springer-Verlag, Berlin, 1983, x+341 pp.
- В. А. Гриценко, “Модулярные формы и пространства модулей абелевых и $K3$ поверхностей”, Алгебра и анализ, 6:6 (1994), 65–102
- V. Gritsenko, “Irrationality of the moduli spaces of polarized abelian surfaces”, Int. Math. Res. Not. IMRN, 1994:6 (1994), 235–243
- В. А. Гриценко, “Рефлективные модулярные формы и их приложения”, УМН, 73:5(443) (2018), 53–122
- V. Gritsenko, K. Hulek, “Minimal Siegel modular threefolds”, Math. Proc. Cambridge Philos. Soc., 123:3 (1998), 461–485
- V. Gritsenko, K. Hulek, “Uniruledness of orthogonal modular varieties”, J. Algebraic Geom., 23:4 (2014), 711–725
- V. Gritsenko, K. Hulek, G. K. Sankaran, “Abelianisation of orthogonal groups and the fundamental group of modular varieties”, J. Algebra, 322:2 (2009), 463–478
- V. A. Gritsenko, K. Hulek, G. K. Sankaran, “The Kodaira dimension of the moduli of K3 surfaces”, Invent. Math., 169:3 (2007), 519–567
- В. А. Гриценко, В. В. Никулин, “Модулярные формы Игузы и “самые простые” лоренцевы алгебры Каца–Муди”, Матем. сб., 187:11 (1996), 27–66
- V. A. Gritsenko, V. V. Nikulin, “Automorphic forms and Lorentzian Kac–Moody algebras. II”, Internat. J. Math., 9:2 (1998), 201–275
- V. Gritsenko, V. V. Nikulin, “Lorentzian Kac–Moody algebras with Weyl groups of 2-reflections”, Proc. Lond. Math. Soc. (3), 116:3 (2018), 485–533
- V. Gritsenko, C. Poor, D. S. Yuen, “Borcherds products everywhere”, J. Number Theory, 148 (2015), 164–195
- V. Gritsenko, C. Poor, D. S. Yuen, “Antisymmetric paramodular forms of weights 2 and 3”, Int. Math. Res. Not. IMRN, 2019, rnz011, published online
- V. Gritsenko, N.-P. Skoruppa, D. Zagier, Theta blocks
- В. А. Гриценко, Х. Ванг, “Гипотеза о тэта-блоках первого порядка”, УМН, 72:5(437) (2017), 191–192
- V. Gritsenko, Haowu Wang, “Theta block conjecture for paramodular forms of weight 2”, Proc. Amer. Math. Soc. (to appear)
- M. Gross, S. Popescu, “Calabi–Yau three-folds and moduli of abelian surfaces. II”, Trans. Amer. Math. Soc., 363:7 (2011), 3573–3599
- В. В. Никулин, “Целочисленные симметрические билинейные формы и некоторые их геометрические приложения”, Изв. АН СССР. Сер. матем., 43:1 (1979), 111–177
- C. Poor, J. Shurman, D. S. Yuen, “Siegel paramodular forms of weight 2 and squarefree level”, Int. J. Number Theory, 13:10 (2017), 2627–2652
- C. Poor, D. S. Yuen, “Paramodular cusp forms”, Math. Comp., 84:293 (2015), 1401–1438
- N. R. Scheithauer, “On the classification of automorphic products and generalized Kac–Moody algebras”, Invent. Math., 164:3 (2006), 641–678
- N. R. Scheithauer, “The Weil representation of $operatorname{SL}_2(mathbb Z)$ and some applications”, Int. Math. Res. Not. IMRN, 2009:8 (2009), 1488–1545
- N. R. Scheithauer, “Some constructions of modular forms for the Weil representation of $operatorname{SL}(2,mathbb Z)$”, Nagoya Math. J., 220 (2015), 1–43
- N. R. Scheithauer, “Automorphic products of singular weight”, Compos. Math., 153:9 (2017), 1855–1892
Дополнительные файлы
