Биллиарды, ограниченные дугами софокусных квадрик на плоскости Минковского
- Авторы: Каргинова Е.Е.1
-
Учреждения:
- Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
- Выпуск: Том 211, № 1 (2020)
- Страницы: 3-31
- Раздел: Статьи
- URL: https://journal-vniispk.ru/0368-8666/article/view/133302
- DOI: https://doi.org/10.4213/sm9109
- ID: 133302
Цитировать
Аннотация
Об авторах
Екатерина Евгеньевна Каргинова
Московский государственный университет имени М. В. Ломоносова, механико-математический факультет
Список литературы
- Дж. Д. Биркгоф, Динамические системы, Изд. дом “Удмуртский университет”, Ижевск, 1999, 408 с.
- В. В. Козлов, Д. В. Трещeв, Биллиарды. Генетическое введение в динамику систем с ударами, Изд-во Моск. ун-та, М., 1991, 168 с.
- В. В. Фокичева, “Топологическая классификация биллиардов в локально плоских областях, ограниченных дугами софокусных квадрик”, Матем. сб., 206:10 (2015), 127–176
- V. Dragovic, M. Radnovic, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4-5 (2009), 479–494
- В. Драгович, М. Раднович, Интегрируемые биллиарды, квадрики и многомерные поризмы Понселе, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2010, 338 с.
- В. В. Фокичева, А. Т. Фоменко, “Интегрируемые биллиарды моделируют важные интегрируемые случаи динамики твердого тела”, Докл. РАН, 465:2 (2015), 150–153
- V. V. Fokicheva, A. T. Fomenko, “Billiard systems as the models for the rigid body dynamics”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, Springer, Cham, 2016, 13–33
- В. В. Ведюшкина (Фокичева), А. Т. Фоменко, “Интегрируемые топологические биллиарды и эквивалентные динамические системы”, Изв. РАН. Сер. матем., 81:4 (2017), 20–67
- В. Драгович, М. Раднович, “Топологические инварианты эллиптических биллиардов и геодезических потоков эллипсоидов в пространстве Минковского”, Фундамент. и прикл. матем., 20:2 (2015), 51–64
- А. Т. Фоменко, “Симплектическая топология вполне интегрируемых гамильтоновых систем”, УМН, 44:1(265) (1989), 145–173
- А. Т. Фоменко, Х. Цишанг, “Топологический инвариант и критерий эквивалентности интегрируемых гамильтоновых систем с двумя степенями свободы”, Изв. АН СССР. Сер. матем., 54:3 (1990), 546–575
- С. В. Матвеев, А. Т. Фоменко, Алгоритмические и компьютерные методы в трехмерной топологии, 2-е изд., перераб. и доп., Наука, М., 1998, 304 с.
- A. T. Fomenko, P. V. Morozov, “Some new results in topological classification of integrable systems in rigid body dynamics”, Contemporary geometry and related topics (Belgrade, Yugoslavia, 2002), World Sci. Publ., River Edge, NJ, 2004, 201–222
- Е. А. Кудрявцева, И. М. Никонов, А. Т. Фоменко, “Максимально симметричные клеточные разбиения поверхностей и их накрытия”, Матем. сб., 199:9 (2008), 3–96
- A. T. Fomenko, A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems”, Topology Appl., 159:7 (2012), 1964–1975
- Е. А. Кудрявцева, А. Т. Фоменко, “Группы симметрий правильных функций Морса на поверхностях”, Докл. РАН, 446:6 (2012), 615–617
- A. T. Fomenko, A. Konyaev, “Algebra and geometry through Hamiltonian systems”, Continuous and distributed systems. Theory and applications, Solid Mech. Appl., 211, Springer, Cham, 2014, 3–21
- A. T. Fomenko, S. S. Nikolaenko, “The Chaplygin case in dynamics of a rigid body in fluid is orbitally equivalent to the Euler case in rigid body dynamics and to the Jacobi problem about geodesics on the ellipsoid”, J. Geom. Phys., 87 (2015), 115–133
- A. T. Fomenko, V. V. Trofimov, Integrable systems on Lie algebras and symmetric spaces, Adv. Stud. Contemp. Math., 2, Gordon and Breach Sci. Publ., New York, 1988, xii+294 pp.
- С. В. Матвеев, А. Т. Фоменко, “Теория типа Морса для интегрируемых гамильтоновых систем с ручными интегралами”, Матем. заметки, 43:5 (1988), 663–671
- А. В. Болсинов, А. Т. Фоменко, Интегрируемые гамильтоновы системы. Геометрия, топология, классификация, т. 1, 2, Изд. дом “Удмуртский университет”, Ижевск, 1999, 444 с., 447 с.
- А. Т. Фоменко, “Теория бордизмов интегрируемых гамильтоновых невырожденных систем с двумя степенями свободы. Новый топологический инвариант многомерных интегрируемых систем”, Изв. АН СССР. Сер. матем., 55:4 (1991), 747–779
- А. Т. Фоменко, Симплектическая геометрия. Методы и приложения, Изд-во Моск. ун-та, М., 1988, 414 с.
Дополнительные файлы
