Kripke semantics for the logic of problems and propositions
- Authors: Onoprienko A.A.1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Issue: Vol 211, No 5 (2020)
- Pages: 98-125
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133331
- DOI: https://doi.org/10.4213/sm9275
- ID: 133331
Cite item
Abstract
Keywords
About the authors
Anastasiya Aleksandrovna Onoprienko
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Email: ansidiana@yandex.ru
without scientific degree, no status
References
- S. A. Melikhov, A Galois connection between classical and intuitionistic logics. I: Syntax, 2013–2017
- S. A. Melikhov, A Galois connection between classical and intuitionistic logics. II: Semantics, 2015–2018
- А. Н. Колмогоров, Избранные труды. Математика и механика, Наука, М., 1985, 470 с.
- А. Н. Колмогоров, “О принципе tertium non datur”, Матем. сб., 32 (1925), 646–667
- А. Гейтинг, Интуиционизм. Введение, Мир, М., 1965, 200 с.
- S. A. Melikhov, Mathematical semantics of intuitionistic logic, 2015–2017
- A. S. Troelstra, “Aspects of constructive mathematics”, Handbook of mathematical logic, Stud. Logic Found. Math., 90, North-Holland, Amsterdam, 1977, 973–1052
- A. S. Troelstra, H. Schwichtenberg, Basic proof theory, Cambridge Tracts Theoret. Comput. Sci., 43, Cambridge Univ. Press, Cambridge, 1996, xii+343 pp.
- G. Kreisel, “Perspectives in the philosophy of pure mathematics”, Logic, methodology and philosophy of science (Bucharest, 1971), v. IV, Stud. Logic Found. Math., 74, North-Holland, Amsterdam, 1973, 255–277
- P. Martin-Löf, Intuitionistic type theory, Notes by G. Sambin, Stud. Proof Theory Lecture Notes, 1, Bibliopolis, Naples, 1984, iv+91 pp.
- С. К. Клини, Введение в метаматематику, ИЛ, М., 1957, 526 с.
- S. N. Artemov, “Explicit provability and constructive semantics”, Bull. Symbolic Logic, 7:1 (2001), 1–36
- С. Н. Артeмов, “Подход Колмогорова и Гeделя к интуиционистской логике и работы последнего десятилетия в этом направлении”, УМН, 59:2(356) (2004), 9–36
- K. Gödel, “Eine Interpretation des intuitionistischen Aussagenkalküls”, Ergebnisse math. Kolloquium Wien, 4 (1933), 39–40
- J.-Y. Girard, “Linear logic”, Theoret. Comput. Sci., 50:1 (1987), 1–101
- J.-Y. Girard, “On the unity of logic”, Ann. Pure Appl. Logic, 59:3 (1993), 201–217
- G. Japaridze, On resources and tasks, 2013
- G. Japaridze, “The logic of tasks”, Ann. Pure Appl. Logic, 117:1-3 (2002), 261–293
- G. Japaridze, “Intuitionistic computability logic”, Acta Cybernet., 18:1 (2007), 77–113
- G. Japaridze, “The intuitionistic fragment of computability logic at the propositional level”, Ann. Pure Appl. Logic, 147:3 (2007), 187–227
- Chuck Liang, D. Miller, “Kripke semantics and proof systems for combining intuitionistic logic and classical logic”, Ann. Pure Appl. Logic, 164:2 (2013), 86–111
- Chuck Liang, D. Miller, “Unifying classical and intuitionistic logics for computational control”, 2013 28th annual ACM/IEEE symposium on logic in computer science (LICS 2013), IEEE Computer Soc., Los Alamitos, CA, 2013, 283–292
- M. Bilkova, G. Greco, A. Palmigiano, A. Tzimoulis, N. Wijnberg, “The logic of resources and capabilities”, Rev. Symb. Log., 11:2 (2018), 371–410
- S. Artemov, T. Protopopescu, Intuitionistic epistemic logic, 2014
- K. Gödel, “Lecture at Zilsel's”, Collected works, v. III, Clarendon Press, Oxford Univ. Press, New York, 1995, 86–113
- Е. Расeва, Р. Сикорский, Математика метаматематики, Наука, М., 1972, 591 с.
- В. Е. Плиско, В. Х. Хаханян, Интуиционистская логика, МГУ, мех.-матем. ф-т, М., 2009, 159 с.
- Н. К. Верещагин, А. Шень, Лекции по математической логике и теории алгоритмов, Часть 2. Языки и исчисления, 4-е изд., испр., МЦНМО, М., 2012, 240 с.
- T. Protopopescu, “Intuitionistic epistemology and modal logics of verification”, Logics, rationality and interaction (LORI 2015), Lecture Notes in Comput. Sci., 9394, Springer, Heidelberg, 2015, 295–307
- S. Artemov, T. Protopopescu, “Intuitionistic epistemic logic”, Rev. Symb. Log., 9:2 (2016), 266–298
- A. Chagrov, M. Zakharyaschev, Modal logic, Oxford Logic Guides, 35, Oxford Univ. Press, New York, 1997, xvi+605 pp.
Supplementary files
