Cocompact lattices in locally pro-$p$-complete rank-2 Kac-Moody groups
- Authors: Capdeboscq I.1, Hristova K.2, Rumynin D.A.1,3
-
Affiliations:
- University of Warwick, Mathematics Institute
- School of Mathematics, University of East Anglia
- Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
- Issue: Vol 211, No 8 (2020)
- Pages: 3-19
- Section: Articles
- URL: https://journal-vniispk.ru/0368-8666/article/view/133336
- DOI: https://doi.org/10.4213/sm9311
- ID: 133336
Cite item
Abstract
Keywords
About the authors
Inna Capdeboscq
University of Warwick, Mathematics Institute
Katerina Hristova
School of Mathematics, University of East Anglia
Dmitriy Anatol'evich Rumynin
University of Warwick, Mathematics Institute; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)
References
- H. Bass, A. Lubotzky, Tree lattices, Progr. Math., 176, Birkhäuser Boston, Inc., Boston, MA, 2001, xiv+233 pp.
- A. Borel, G. Harder, “Existence of discrete cocompact subgroups of reductive groups over local fields”, J. Reine Angew. Math., 298 (1978), 53–64
- I. Capdeboscq, K. Kirkina, D. Rumynin, “Presentations of affine Kac–Moody groups”, Forum Math. Sigma, 6:e21 (2018), 35 pp.
- I. Capdeboscq, B. Remy, “On some pro-$p$ groups from infinite-dimensional Lie theory”, Math. Z., 278:1-2 (2014), 39–54
- I. Capdeboscq, D. Rumynin, “Kac–Moody groups and completions”, J. Algebra (to appear)
- I. Capdeboscq, A. Thomas, “Lattices in complete rank 2 Kac–Moody groups”, J. Pure Appl. Algebra, 216:6 (2012), 1348–1371
- I. Capdeboscq, A. Thomas, “Co-compact lattices in complete Kac–Moody groups with Weyl group right-angled or a free product of spherical special subgroups”, Math. Res. Lett., 20:2 (2013), 339–358
- P.-E. Caprace, N. Monod, “A lattice in more than two Kac–Moody groups is arithmetic”, Israel J. Math., 190 (2012), 413–444
- P.-E. Caprace, B. Remy, “Simplicity and superrigidity of twin building lattices”, Invent. Math., 176:1 (2009), 169–221
- L. Carbone, M. Ershov, G. Ritter, “Abstract simplicity of complete Kac–Moody groups over finite fields”, J. Pure Appl. Algebra, 212:10 (2008), 2147–2162
- L. Carbone, H. Garland, “Existence of lattices in Kac–Moody groups over finite fields”, Commun. Contemp. Math., 5:5 (2003), 813–867
- R. W. Carter, Y. Chen, “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings”, J. Algebra, 155:1 (1993), 44–54
- И. М. Гельфанд, М. И. Граев, И. И. Пятецкий-Шапиро, Теория представлений и автоморфные функции, Обобщенные функции, 6, Наука, М., 1966, 512 с.
- W. Herfort, L. Ribes, “Torsion elements and centralizers in free products of profinite groups”, J. Reine Angew. Math., 1985:358 (1985), 155–161
- Э. Хьюитт, К. Росс, Абстрактный гармонический анализ, т. I, Наука, М., 1975, 654 с.
- A. Lubotzky, “Lattices of minimal covolume in $operatorname{SL}_2$: a nonarchimedean analogue of Siegel's theorem $mugeq pi/21$”, J. Amer. Math. Soc., 3:4 (1990), 961–975
- T. Marquis, “Around the Lie correspondence for complete Kac–Moody groups and Gabber–Kac simplicity”, Ann. Inst. Fourier (Grenoble), 69:6 (2019), 2519–2576
- L. Ribes, P. Zalesskii, Profinite groups, Ergeb. Math. Grenzgeb. (3), 40, Springer-Verlag, Berlin, 2000, xiv+435 pp.
- G. Rousseau, “Groupes de Kac–Moody deployes sur un corps local II. Masures ordonnees”, Bull. Soc. Math. France, 144:4 (2016), 613–692
- C. L. Siegel, “Some remarks on discontinuous groups”, Ann. of Math. (2), 46:4 (1945), 708–718
- J. Tits, “Uniqueness and presentation of Kac–Moody groups over fields”, J. Algebra, 105:2 (1987), 542–573
- J. Tits, “Ensembles ordonnes, immeubles et sommes amalgamees”, Bull. Soc. Math. Belg. Ser. A, 38 (1986), 367–387
Supplementary files
