Cocompact lattices in locally pro-$p$-complete rank-2 Kac-Moody groups

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We initiate an investigation of lattices in a new class of locally compact groups: so-called locally pro-$p$-complete Kac-Moody groups. We discover that in rank 2 their cocompact lattices are particularly well-behaved: under mild assumptions, a cocompact lattice in this completion contains no elements of order $p$. This statement is still an open question for the Caprace-Remy-Ronan completion. Using this, modulo results of Capdeboscq and Thomas, we classify edge-transitive cocompact lattices and describe a cocompact lattice of minimal covolume. Bibliography: 22 titles.

About the authors

Inna Capdeboscq

University of Warwick, Mathematics Institute

Katerina Hristova

School of Mathematics, University of East Anglia

Dmitriy Anatol'evich Rumynin

University of Warwick, Mathematics Institute; Laboratory of algebraic geometry and its applications, National Research University "Higher School of Economics" (HSE)

References

  1. H. Bass, A. Lubotzky, Tree lattices, Progr. Math., 176, Birkhäuser Boston, Inc., Boston, MA, 2001, xiv+233 pp.
  2. A. Borel, G. Harder, “Existence of discrete cocompact subgroups of reductive groups over local fields”, J. Reine Angew. Math., 298 (1978), 53–64
  3. I. Capdeboscq, K. Kirkina, D. Rumynin, “Presentations of affine Kac–Moody groups”, Forum Math. Sigma, 6:e21 (2018), 35 pp.
  4. I. Capdeboscq, B. Remy, “On some pro-$p$ groups from infinite-dimensional Lie theory”, Math. Z., 278:1-2 (2014), 39–54
  5. I. Capdeboscq, D. Rumynin, “Kac–Moody groups and completions”, J. Algebra (to appear)
  6. I. Capdeboscq, A. Thomas, “Lattices in complete rank 2 Kac–Moody groups”, J. Pure Appl. Algebra, 216:6 (2012), 1348–1371
  7. I. Capdeboscq, A. Thomas, “Co-compact lattices in complete Kac–Moody groups with Weyl group right-angled or a free product of spherical special subgroups”, Math. Res. Lett., 20:2 (2013), 339–358
  8. P.-E. Caprace, N. Monod, “A lattice in more than two Kac–Moody groups is arithmetic”, Israel J. Math., 190 (2012), 413–444
  9. P.-E. Caprace, B. Remy, “Simplicity and superrigidity of twin building lattices”, Invent. Math., 176:1 (2009), 169–221
  10. L. Carbone, M. Ershov, G. Ritter, “Abstract simplicity of complete Kac–Moody groups over finite fields”, J. Pure Appl. Algebra, 212:10 (2008), 2147–2162
  11. L. Carbone, H. Garland, “Existence of lattices in Kac–Moody groups over finite fields”, Commun. Contemp. Math., 5:5 (2003), 813–867
  12. R. W. Carter, Y. Chen, “Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings”, J. Algebra, 155:1 (1993), 44–54
  13. И. М. Гельфанд, М. И. Граев, И. И. Пятецкий-Шапиро, Теория представлений и автоморфные функции, Обобщенные функции, 6, Наука, М., 1966, 512 с.
  14. W. Herfort, L. Ribes, “Torsion elements and centralizers in free products of profinite groups”, J. Reine Angew. Math., 1985:358 (1985), 155–161
  15. Э. Хьюитт, К. Росс, Абстрактный гармонический анализ, т. I, Наука, М., 1975, 654 с.
  16. A. Lubotzky, “Lattices of minimal covolume in $operatorname{SL}_2$: a nonarchimedean analogue of Siegel's theorem $mugeq pi/21$”, J. Amer. Math. Soc., 3:4 (1990), 961–975
  17. T. Marquis, “Around the Lie correspondence for complete Kac–Moody groups and Gabber–Kac simplicity”, Ann. Inst. Fourier (Grenoble), 69:6 (2019), 2519–2576
  18. L. Ribes, P. Zalesskii, Profinite groups, Ergeb. Math. Grenzgeb. (3), 40, Springer-Verlag, Berlin, 2000, xiv+435 pp.
  19. G. Rousseau, “Groupes de Kac–Moody deployes sur un corps local II. Masures ordonnees”, Bull. Soc. Math. France, 144:4 (2016), 613–692
  20. C. L. Siegel, “Some remarks on discontinuous groups”, Ann. of Math. (2), 46:4 (1945), 708–718
  21. J. Tits, “Uniqueness and presentation of Kac–Moody groups over fields”, J. Algebra, 105:2 (1987), 542–573
  22. J. Tits, “Ensembles ordonnes, immeubles et sommes amalgamees”, Bull. Soc. Math. Belg. Ser. A, 38 (1986), 367–387

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Capdeboscq I., Hristova K., Rumynin D.A.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».